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Laser irradiation effects on surface, structural and mechanical properties of Al–Cu–Mg alloy (Al–Cu
alloy 2024) have been investigated. The specimens were irradiated for various fluences ranging from
3.8 to 5.5 J/cm2 using an Excimer (KrF) laser (248 nm, 18 ns, 30 Hz) under vacuum environment. The
surface and structural modifications of the irradiated targets have been investigated by scanning electron
microscope (SEM) and X-ray diffractometer (XRD), respectively. SEM analysis reveals the formation of
micro-sized craters along the growth of periodic surface structures (ripples) at their peripheries. The size
of the craters initially increases and then decreases by increasing the laser fluence. XRD analysis shows an
anomalous trend in the peak intensity and crystallite size of the specimen irradiated for various fluences. A
universal tensile testing machine and Vickers microhardness tester were employed in order to investigate
the mechanical properties of the irradiated targets. The changes in yield strength, ultimate tensile strength
and microhardness were found to be anomalous with increasing laser fluences. The changes in the surface
and structural properties of Al–Cu alloy 2024 after laser irradiation have been associated with the changes
in mechanical properties.

Keywords: laser fluence; structural modification; mechanical properties; surface morphology

1. Introduction

Laser-material processing is a versatile technique and is highly useful for the surface, structural
and mechanical modification of various kinds of materials. Laser-material processing is a subject
of considerable interest with its associated vast range of applications in industry, e.g. welding,
drilling, cutting, surface alloying, cladding, hardening, surface cleaning and phase transforma-
tions. Pulsed laser irradiations produce defects and change in the behavior of metals due to the
thermal, physical and mechanical effects (1, 2). Dou et al. (3) studied surface texturing effects
of Al–Cu alloy-2024 using femtosecond and nanosecond pulse laser irradiation and found that
surface features ranging from nano to micro-dimensions can be developed through variation in
laser fluence intensities. They also observed that ultraviolet laser pulses provide a mechanism for
the alteration of surface morphology and texturing without significant damage of the underlying
material. Excimer laser irradiation produces kinetically controlled effects in materials which can
differ substantially from thermodynamically driven processes.

Al–Cu alloy 2024 is an important engineering material which has high strength to weight ratio,
good fatigue resistance; high thermal and electrical conductivity. It is widely used in aircraft,
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2 D. Yousaf et al.

especially wings and fuselage structures. Due to its widespread use in automotive and aerospace
industry, it is therefore of fundamental importance and interest to explore the surface, structural
and mechanical properties of Al–Cu alloy-2024 after laser irradiation.

In this regard, Hong et al. (4) investigated the effects of the laser shock processing on the
microstructure, hardness, surface roughness, residual stress, fatigue life and crack growth of
Al–Cu alloy 2024. They found that the fatigue life of laser shocked specimen was greater by a
factor twice than that of the unshocked specimens. It was also found that the fatigue crack growth
at a given stress intensity was reduced by over an order of magnitude. The fatigue behavior
improvements are attributed to a combination of increased dislocation density, decreased surface
roughness and compressive residual stress induced by laser shock waves.Yang et al. (5) discussed
the effect of laser shock peening on the fatigue behavior of Al–Cu alloy 2024 under a confined
ablation mode using Nd:glass laser and they found that laser shock peening was an effective surface
treatment technique for improving the fatigue life of Al–Cu alloy 2024 which was attributed to
an introduction of residual compression stress.

In the present work, a pulsed Excimer (KrF) laser of (248 nm, 18 ns, 30 Hz) is employed to
irradiate the Al–Cu alloy 2024 for various fluences ranging from 3.8 to 5.5 J/cm2. The samples
were irradiated under vacuum condition. The surface morphological evolution for various laser
fluences is investigated by scanning electron microscope (SEM). The novelty of the present work
is to correlate surface modification with structural and mechanical properties of irradiated target,
explored by X-ray diffractometer (XRD), tensile testing and microhardness techniques.According
to our knowledge very little work is reported in which surface, structural and mechanical properties
of materials after laser irradiation are discussed. Specifically, for Al–Cu alloy 2024, no work has
been reported in which a relationship is established between the surface, structural and mechanical
modification of irradiated targets. In these results, it has been reported that up to certain range
with increasing laser fluence the generated defects increase and consequently an increase in yield
strength (YS) and ultimate tensile strength (UTS) is observed, whereas any further increase in
fluence causes a reduction in the defects due to annealing.

2. Experimental work

The Al–Cu alloy 2024 used for this experiment had the following composition of aluminum
93.5%, copper 4.3–4.5%, manganese 0.5–0.6%, and magnesium 1.3–1.5%. Specimens in the
form of sheets with thickness of 3 mm, length of 45 mm and width of 6 mm were selected for
irradiation. The surface of the samples was polished with silicon carbide (SiC) papers of different
progressive grades and then mechanically polished with diamond paste down to rms surface
roughness of approximately 10 nm. The surface roughness of the targets was measured by using
atomic force microscope (AFM). The rms value of the surface roughness comes out to be 10 nm.
The initial rms surface roughness of the target plays a significant role for the surface modification
of the target after irradiation either it is explored by SEM or AFM analysis. In order to explore
small-scale structures (nanoscale) on the irradiated surface, too much refined surfaces of metal or
alloys are required. Most real-life surfaces are not perfectly flat (not even near-perfect mirrors)
and have certain degrees of texture and roughness to them, which will influence their optical
behavior. Therefore, the polishing process can improve the surface texture by reducing the initial
surface roughness. In our case the surface roughness of 10 nm is optimum, because we were only
interested to explore micostructuring (ripples and craters) of laser-irradiated alloy.

On contrary, if the surface roughness is too high (say 50 nm) it will be difficult to explore craters
and ripples with a scale height of less than 50 nm.Additionally, for higher initial surface roughness
of 50 nm, the energy absorption of incoming electromagnetic radiation enhances significantly and
consequently large-scale structures will be produced. Because for a laser-matter interaction and
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Radiation Effects & Defects in Solids 3

processing application to be possible, the electromagnetic energy of the laser light needs to be
transformed into thermal energy inside the metal. The amount of transformed energy is determined
by the light absorption mechanisms in the metal. Absorption is also heavily dependent upon
the surface properties of the metal or alloy. The initial surface roughness therefore influences
significantly the optical behavior. Pits and valleys may, for instance, ‘trap’ some of the light and
thereby enhance absorption.

The polished samples were annealed under a vacuum of 10−6 Torr by incorporating them in
Pyrex glass tubes at a temperature of 300◦C in a muffle furnace for 120 minutes. After mounting
the samples on the sample holder, they were placed in the chamber, which was evacuated to the
base pressure of 10−3 Torr.

An Excimer laser (KrF) of wavelength 248 nm, pulse duration of 18 ns, repetition rate of 30 Hz
was employed to irradiate the sample under vacuum condition. The target samples were exposed
for five various laser fluence of values 3.8, 4.3, 4.7, 5.1 and 5.5 J/cm2 corresponding to the pulsed
energies of 90, 100, 110, 120 and 130 mJ.

The incident laser beam, after passing through a Plano-convex lens of focal length 50 cm,
was focused perpendicular to the target surface placed in the chamber. The whole experiment was
performed at room temperature. All targets were treated with 2200 laser pulses. The samples were
scanned with the help of a DC motor, thereby irradiating a scanned area of 235 mm × 1 mm. The
surface morphology of the irradiated targets was investigated by a SEM (JEOL-JSM-6480LV).

In order to determine the crystallographic structure and phase analysis of the exposed targets
an XRD X’Pert PRO multipurpose powder diffractometer was employed. The specimens were
then subjected to deformation for hardness and tensile strength using a Vickers hardness tester
(Zwick/Roell ZHU5030) and a universal tensile testing machine (AG-1 Shimadzu) to investigate
microhardness and mechanical properties of Al–Cu alloy 2024.

3. Result and discussions

3.1. Surface morphology

Figure 1 shows the SEM images of (a) unirradiated and irradiated Al–Cu alloy 2024 for various
laser fluences of (b) 3.8 J/cm2, (c) 4.3 J/cm2 (d) 4.7 J/cm2 (e) 5.1 J/cm2 and (f) 5.5 J/cm2. For the
fluence of 3.8 J/cm2, a few micro-sized craters and ridges with non-uniform shape and density
distribution are observed as shown in Figure 1(b).When the fluence is increased to 4.3 J/cm2,
the size, density and uniformity of craters increase as revealed in Figure 1(c). The appearance
of multiple ablative layers and ripples is also seen at this fluence. Further increase in fluence to
4.7 J/cm2 causes a decrease in the size of the craters as shown in Figure 1(d).The appearance of
multiple ablative layers and ripples becomes more distinct at this fluence and significant changes
in the density of the craters is observed.

When the fluence is increased up to 5.1 J/cm2, the size of the craters decreases significantly
and its uniformity and density increase as exhibited in Figure 1(e). Multiple ablative layers and
ripples become more prominent at this fluence. Figure 1(f) depicts that at the maximum fluence
of 5.5 J/cm2, regular shaped craters are observed. The edges of these craters have been found
to be uplifted. The crater formation as observed in Figure 1(b)–(d) can be attributed to thermal
ablation on the basis of laser-induced heating, thermal desorption, melting and explosive boiling
of the target surface (6, 7). It has been investigated that if the surface temperature exceeds the
melting and evaporation temperature of that material then fusion and evaporation take place. When
the irradiation energy is higher than the ablation threshold, it leads to an ionization and results in
plasma formation. The phenomena of melting and vaporization can be observed from the presence
of molten materials around the craters (8). It has been also found that when the pressure of the
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4 D. Yousaf et al.

(a) (b)

(c) (d)

(e) (f)

Figure 1. SEM micrographs revealing the comparison of variation in surface morphology of (a) unirradiated and irra-
diated Al-2024 alloy by 2200 pulses of Excimer laser at a wavelength of 248 nm, pulse duration of 18 ns and repetition
rate of 30 Hz for various fluences of (b) 3.8 J/cm2 (c) 4.3 J/cm2 (d) 4.7 J/cm2 (e) 5.1 J/cm2 and (f) 5.5 J/cm2.

plasma/vapor exceeds the surrounding pressure, the molten material can be expelled explosively
from the target due to the violent recoil pressure. As a consequence, the crater is formed (9).
The variations in the size of craters are attributed to a large number of surface defects such as
inclusions, small pits, contaminants, oxides and other heterogeneities. These defects are generally
associated with a higher sensitivity to laser absorption than the bulk material and hence cause the
non-uniform laser energy absorption inside the material (10).

By increasing fluence from 3.8 to 4.3 J/cm2 as shown in Figure 1(c), the increase in the crater
size is attributed to the increase in recoil pressure with greater laser fluence. By increasing fluence
upto 4.7 J/cm2 as displayed in Figure 1(d), the crater size has been observed to be reduced which
is primarily due to refilling of the melted material. With further increase in laser energy density
up to the value 5.1 J/cm2 as displayed in Figure 1(e), it has been observed that the crater size
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Radiation Effects & Defects in Solids 5

decreases but the crater density does not increase, which can be explained by the accentuated local
laser ablation effect due to more refilling of cavities. When the fluence is further increased up to
a maximum value of 5.5 J/cm2, the size of the craters becomes smaller due to intense melting,
ablation, resolidification and refilling of the material as displayed in Figure 1(f) (11, 12). Surface
plasmons are produced due to coherent interaction of the incident laser field with free electrons
created in the material. The formation of the ripples (periodicity) can thus be attributed to the
excitation of the surface plasmons to induce the periodic enhancement of local fields in the surface
layer. Thus, laser-material interaction is the reason for the development of compressive stresses
which are responsible for the formation of defects and ripples in the interior of craters (13).

The fractographs of (a) unirradiated and irradiated Al–Cu alloy 2024 for various fluences of (b)
3.8 J/cm2 (c) 4.3 J/cm2 (d) 4.7 J/cm2 (e) 5.1 J/cm2 (f) 5.5 J/cm2 are displayed in Figure 2. These
fractographs reveal the appearance of micro-sized cavities. For an unirradiated sample, the density

(a) (b)

(c) (d)

(e) (f)

Figure 2. SEM fractographs revealing the comparison of variation in surface morphology of (a) unirradiated and irra-
diated Al-2024 alloy by 2200 pulses of Excimer laser at a wavelength of 248 nm, pulse duration of 18 ns and repetition
rate of 30 Hz at different fluences of (b) 3.8 J/cm2(c) 4.3 J/cm2 (d) 4.7 J/cm2 (e) 5.1 J/cm2 and (f) 5.5 J/cm2.
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6 D. Yousaf et al.

of cavities is small. The density of the cavities initially increases when the laser fluence increases
from 3.8 J/cm2 to a value of 4.3 J/cm2. A decrease in the density of the cavities is observed
when the fluence is further increased to its highest value of 5.5 J/cm2 and at this fluence, cavities
with maximum number density due to maximum heating, melting and consequently pronounced
defect formation have been observed. The cracks are also seen in these fractographs. However, by
increasing laser fluence, the density of the cracks increases and the surface shows large number of
indentations as shown in the Figures 2(a)–(d). Hence, Figure 1 reveals the surface modification of
alloy after irradiation and represents the appearance of craters at the surface, whereas fractographs
of Figure 2 represent the generated defects in the form of cavities and cracks in bulk material after
irradiation. However, in both figures the variation in the density and size of generated defects is
anomalous.

3.2. XRD analysis

The XRD technique is used to obtain phase identification, variation in crystallinity, dislocation
densities and energy deposited in the material. Figure 3 depicts the XRD patterns of (a) unirradiated
and irradiated Al–Cu alloy 2024 under the vacuum condition for various laser fluences of (b)
3.8 J/cm2 (c) 4.3 J/cm2 (d) 4.7 J/cm2 (e) 5.1 J/cm2 and (f) 5.5 J/cm2.

The diffraction peaks corresponding to (222), (213), (440) and (622) planes are observed for both
unirradiated and irradiated specimen at angles 38◦, 44◦, 65◦ and 78◦, respectively. Both the peak
intensity and crystallinity of Al–Cu alloy 2024 specimen show an anomalous behavior for various
fluences. The variations in the peak intensity are attributed to scattering effects, non-uniform

Figure 3. XRD pattern of (a) unirradiated and irradiated ofAl-2024 alloy by 2200 pulses of Excimer laser at a wavelength
of 248 nm, pulse duration of 18 ns and repetition rate of 30 Hz for various fluences of (b) 3.8 J/cm2 (c) 4.3 J/cm2(d)
4.7 J/cm2 (e) 5.1 J/cm2 and (f) 5.5 J/cm2.
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Radiation Effects & Defects in Solids 7

Table 1. Variation in the crystallite size of laser irradi-
ated Al-2024 alloy for various fluences of 3.8 J/cm2 (b)
4.3 J/cm2 (c) 4.7 J/cm2 (d) 5.1 J/cm2 and (e) 5.5 J/cm2.

Fluence (J/cm2) Crystallite size (nm)

3.8 35
4.0 50
4.7 20
5.1 47
5.5 56

thermal stresses, re-crystallization and non-uniform conduction of the energy absorbed by the
atoms as a result of laser-matter interactions (14, 15).

The crystallite size was evaluated using Scherer’s formula (16)

Crystallite size (D) = 0.9λ

β cos θ
, (1)

where ‘λ’ is wavelength of X-rays, ‘β’ is full wave half maxima and ‘θ ’ is the angle of XRD.
The variation of crystallite size with the fluence is represented in Table 1

The dislocation density has been evaluated by using following formula (17)

Dislocation density = 1

(Crystallite size)2
. (2)

Initially, the peak intensity increases by increasing the fluence up to the value of 3.8 J/cm2. This
increase in peak intensity is attributed to the enhancement of diffraction of X-ray from target and
the crystal growth caused by atomic diffusion across the grain boundaries after laser ablation. By
increasing the fluence up to the value of 4.3 J/cm2, the peak intensity decreases. Further increase
in fluence up to the value of 4.7 J/cm2 causes more reduction in peak intensity. The reason for
the reduction of peak intensity is the re-crystallization phenomenon during resolidification. Large
sized grains break up into the smaller ones after laser irradiation and cause the attenuation in the
peak intensity.

Further increase in fluence up to a maximum value of 5.5 J/cm2 causes enhancement of peak
intensity which is related to the enhanced crystal growth due to maximum energy deposition.
As the laser beam interacts with the material, the energy deposition initially generates defects.
When energy deposition increases with increase in laser fluence, the defects are annealed. Further
increase in laser fluence causes the generation of enhanced defects. Hence, the peak intensities
initially increase and then decrease showing an anomalous behavior. Similarly, crystallite size
and dislocation density initially increases then decreases and finally increases, hence reveals an
anomalous behavior again. This variation in the crystallite size and dislocation density can be
attributed to the thermal stresses, lattice defects and recovery processes (18, 19).

The variation in the crystallite size and dislocation density for different laser fluences is shown
in Figures 4 and 5.

Laser-induced pressure (GPa) and deposited energy (eV/atom) are also evaluated for various
laser fluences and is plotted in Figure 6. With laser irradiation, different surface irregularities
(protrusions and pits) emerge progressively with different geometrical sizes depending upon the
laser fluence and the target selection. If the laser energy deposited (eV/atom) exceeds the heat
of melting (threshold) per atom for a corresponding irradiated target, then localized and isolated
defects can be observed at particular fluence. Therefore, it is important to calculate the deposited
energy per atom for irradiated Al–Cu alloy 2024.

The deposited energy per atom is calculated using the following steps:
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8 D. Yousaf et al.

Figure 4. Variation in the crystallite size of laser-irradiated Al-2024 alloy for various fluences of (a) 3.8 J/cm2 (b)
4.3 J/cm2 (c) 4.7 J/cm2 (d) 5.1 J/cm2 and (e) 5.5 J/cm2.

Figure 5. Variation of dislocation density of Al-2024 alloy irradiated for various fluences of (a) 3.8 J/cm2 (b) 4.3 J/cm2

(c) 4.7 J/cm2 (d) 5.1 J/cm2 and (e) 5.5 J/cm2.

Energy per pulse E (J) can be converted into energy in eV/nm2, i.e.
Area of the rectangular focused laser spot = a × b,
where ‘a’ is the length and ‘b’ is the width of the rectangular beam.
The length and width of rectangular beam are measured by irradiating the target material with

laser radiation and then exploring the surface by using SEM analysis.
Here a = 0.235 cm and b = 0.1 cm for the Excimer laser.
Therefore, the area of the rectangular focused laser spot = 0.0235 cm2

Using 1 eV = 1.6 × 10−19 J

Energy(eV/m2) = E × 10−3

1.6 × 10−19

{
10, 000 × 10, 000

0.235 × 0.1

}
= E × 26.60 × 1024 eV/m2.
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Radiation Effects & Defects in Solids 9

Figure 6. Variation of deposited energy (eV/atom) and pressure (GPa) of laser-irradiated Al-2024 alloy for various
fluences of (a) 3.8 J/cm2 (b) 4.3 J/cm2 (c) 4.7 J/cm2 (d) 5.1 J/cm2 and (e) 5.5 J/cm2.

Now the energy deposited per unit volume (eV/m3) in a skin layer (ls) excited by ns-laser is
defined by the following relation:

Eabs
∼= E

(eV/m2)

ls
. (3)

A laser beam with 248 nm wavelength excites Al–Cu alloy 2024 in the skin layer ls = 8.7 nm.
The optical properties of the material (reflection or absorption at 248 nm) affect the energy depo-

sition of the specific material. An absorption coefficient A = (1 − R) = 1 − 0.90526 = 0.09474
(where R is surface reflectivity and A is absorption) at 248 nm for Al–Cu alloy 2024.

The real value of energy deposited (eV/m3) is calculated by multiplying Equation (1) with an
absorption coefficient of the corresponding material as (20)

Eabs
∼= AE (eV/m3),

Eabs = E × 3.05 × 1033 (eV/m3),
(4)

where values of energy range has been taken to be 90, 100, 110, 120, 130 J. In order to calculate
the energy deposited per atom (eV/atom), the number of atoms per unit volume (atom/nm3) must
be known. The number of atoms per cm3 is known to be 1.9 × 1024 for Al–Cu alloy 2024. The
number of atoms per m3 is 190 × 1028. By dividing energy deposited per unit volume (eV/m3)

by the number of atoms (190 × 1028 atoms/m3), energy deposited per atom has been calculated.
It is observed that both pressure and deposited energy per atom increase with increasing laser

fluence. The increase in pressure and deposited energy with the increase in laser fluence can be
attributed to compression stresses and deposition of energy during laser interaction. Our results
also conform to this finding (21).

3.3. Tensile testing

The stress–strain curves of (a) unirradiated and irradiated Al–Cu alloy 2024 alloy for various
fluences of (b) 3.8 J/cm2 (c) 4.3 J/cm2 (d) 4.7 J/cm2 (e) 5.1 J/cm2 (f) 5.5 J/cm2 are exhibited in
Figure 7.

The variations of the YS, UTS and percentage elongation evaluated from the tensile curves for
various laser fluences are plotted in Figures 8 and 9. The YS and UTS of the specimen initially
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10 D. Yousaf et al.

Figure 7. The stress–strain curves of unirradiated and laser-irradiatedAl-2024 alloy for various fluences of (a) 3.8 J/cm2

(b) 4.3 J/cm2 (c) 4.7 J/cm2 (d) 5.1 J/cm2 and (e) 5.5 J/cm2.

Figure 8. Variation of yield stress of irradiated Al-2024 alloy for various fluences of (a) 3.8 J/cm2 (b) 4.3 J/cm2 (c)
4.7 J/cm2 (d) 5.1 J/cm2 and (e) 5.5 J/cm2.

increase after laser irradiation at a fluence of 3.8 J/cm2. However, a decrease in both is observed
when the fluence is increased to the value of 4.3 J/cm2. Again an increasing trend in both YS and
UTS is observed for a higher fluence of 4.7 J/cm2. Afterward, a monotonic decrease is observed
with further increase in fluence from 5.1 to 5.5 J/cm2, respectively.

Similarly, the percentage elongation of the specimen after irradiation decreases at a fluence of
3.8 J/cm2 and then increases at 4.3 J/cm2. With increase in the fluence from 4.7 to 5.5 J/cm2,
a monotonic decrease in percentage elongation is observed. These variations in the value of ‘YS’
and ‘UTS’ may be attributed to the changes in microstructure and dislocation density as the
laser-material interaction takes place.

When laser fluence is increased up to the value of 3.8 J/cm2, it generates enough heat due to
which the density of the defects increases and enhanced stresses are produced due to shock waves
which causes increased tensile strength of the material (22). The improvements of hardness and
elastic modulus of exposed targets in comparison with unexposed target are correlated with the
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Figure 9. Variation of UTS of irradiated Al-2024 alloy for various fluences of (a) 3.8 J/cm2 (b) 4.3 J/cm2 (c) 4.7 J/cm2

(d) 5.1 J/cm2 and (e) 5.5 J/cm2.

generation of the dislocation density, grain size and the microstructural deformation (23, 24).
A reduced density of defects causes a decrease in the tensile strength (23, 25). When the fluence
is increased to 4.3 J/cm2, crystallite size increases and dislocation density decreases due to which
‘YS’ and ‘UTS’ decrease. We assume that a more pronounced material heating and cooling have
taken place which causes annealing of the material and thus is responsible for the reduction of
defect density When the fluence is increased to the value of 4.7 J/cm2, the crystallite size decreases
and dislocation density increases which also induce a high level of residual stress in the specimen,
as a result, ‘YS’ and ‘UTS’ increase. This increase may also be due to the generation of more
defects with the increase in laser fluence. When fluence is further increased from 4.7 J/cm2 to its
maximum value of 5.5 J/cm2, the crystallite size increases and dislocation density decreases due
to merging of defects and resolidification of the material and hence as a result, decreases in the
value of ‘YS’ and ‘UTS’ of the material have been observed.

Hence, we conclude that the tensile properties ofAl–Cu alloy 2024 show an anomalous behavior
mainly due to grain refinement, generation of density dislocations and variation in the density
of defects with increasing laser fluence. Such sort of anomalous behavior of ‘YS’ and ‘UTS’
has not been observed first time. Such behavior was also observed by other research groups. For
example, Khaliq et al. (26) reported that Ti alloy shows anomalous behavior when it is irradiated
with laser.

3.4. Microhardness

Figure 10 shows variation in the value of the microhardness from 88 to 116 HV for different
fluences of values from 3.8 to 5.5 J/cm2. The microhardness initially decreases by increasing
fluence from 3.8 to 4.3 J/cm2. When the fluence is increased from 4.3 to 5.1 J/cm2, an increase in
the microhardness is observed. Further increase in the fluence up to 5.5 J/cm2 causes reduction
in the microhardness of the irradiated material. The changes in microhardness are attributed to
the lattice disorder, associated with changes in crystal structure and thermal compressive stresses
produced in the material as a result of laser-induced heating (18, 19). The change in microhardness
can also be correlated with the change in dislocation density and crystal size as has been evaluated
by XRD analysis and is shown in Figures 4 and 5. By decreasing the grain size and increasing the
dislocation density, microhardness increases (22).
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12 D. Yousaf et al.

Figure 10. Variation of the microhardness of irradiated Al-2024 alloy for various fluences of (a) 3.8 J/cm2 (b)
4.3 J/cm2(c) 4.7 J/cm2 (d) 5.1 J/cm2 and (e) 5.5 J/cm2.

4. Conclusions

The laser irradiation effects on the surface, structural and mechanical modification of Al–Cu alloy
2024 has been revealed. SEM results reveal the appearance of crater formation along with laser-
induced periodic surface structures and multiple ablative layers. By increasing laser fluence, the
size of the craters initially increases and then decreases. From XRD results, it is observed that
peak intensity, crystalline size and dislocation density of the irradiated target exhibit anomalous
behavior by increasing laser fluence. The tensile testing results reveal the dependence of YS,
UTS and elongation upon the laser fluence. Similarly, the microhardness also shows anomalous
behavior for various laser fluences. The observed changes in the mechanical properties are well
correlated with surface and structural modification of irradiated sample.
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