Pulsed Laser Deposition (PLD) of Material

Departmental Seminar

Presented by Syed Iftikhar Hussain 2005/ M.Phil / Phy / 01 Supervised By Dr. Khurram Siraj Department of Physics

University of Engineering & Technology, Lahore.

Contents

- Objective
- Experimental set-up
- Analysis
- Results and Discussion
- Conclusion
- Applications and Future work

To deposit and analyze the thin films of Al-doped CdO on Silicon (111) substrate at different growth temperatures using Pulsed Laser Deposition Technique (PLD).

- i. Target Fabrication
- ii. Substrate
- iii. Laser
- iv.Vacuum Chamber
- v. Vacuum Pump
- vi.Schematic Diagram
- vii.Experimental Conditions

i. Target Fabrication (Al-doped CdO)

ii. Substrate

Silicon (111)

iii. Laser

Excimer Laser (KrF 248 nm, Ex50 GAM Laser Inc. USA)

Schematic Diagram of Experimental Set-up

Excimer Laser	KrF 248 nm, 20 Hz
Energy	45 mJ
Focal length of UV lens	20 cm
Target	Al-doped CdO
Substrate	Silicon (111)
Target substrate distance	50 mm
Deposition Temperature	25 °C, 100 °C, 200 °C, 300 °C, 400 °C
Base pressure	10 -6 torr
Number of shoots	6000

- Structural (XRD)
- Optical (SE)
- Vibrating sample magnetometer (VSM)
- Surface morphology (SEM)

Results and Discussion

Figure 1: XRD Patterns of Al-doped CdO thin films grown at (a) 25 ° C (b) 100 ° C

Figure 2: XRD Patterns of Al-doped CdO thin films grown at (c) 200 ° C

(d) 300 ° C (e) 400 ° C

Table 1: XRD data of Al-doped CdO thin films grown at (1) 25 °C (2) 100 °C (3) 200 °C (4) 300 °C (5) 400 °C

Samples no.	2 θ of (200) plane	d spacing (°A)	Δ2θ	FWHM in Degree β of (200) plane	Particle size D (nm)
1	38.02	2.36484	0.44	0.29	27.076
2	38.015	2.36512	0.63	0.22	35.691
3	38.024	2.36505	0.638	0.198	39.656
4	38.0245	2.36499	0.636	0.167	47.017
5	38.025	2.36503	0.832	0.146	53.780

Particle size Calculation

Scherrer's formula

$$D = \frac{k\lambda}{\beta\cos\theta}$$
(1)

D = Particle size

k = Scherrer's constant ~ 0.94

 λ = Wavelength of X-rays ~ 1.5406 °A for Cu K α

 $\beta = FWHM$

 θ = Bragg's angle

Figure 3: Graph between particle size D (nm) and deposition temperature T (°C)

Figure 4: SE parameter ψ , Δ of Al-doped CdO thin film deposited at different temperature.

Figure 5: Refractive index and Extinction coefficient of Al-doped CdO thin film deposited at different temperature.

 $\alpha = 4\pi k / \lambda$ (2)

Figure 6: Absorption coefficient of Al-doped CdO thin film deposited at different temperature.

$$A = \frac{4n}{(n+1)^2 + k^2}$$
 (3)

$$R = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2} \quad ----- (4)$$

Figure 7: Plot of (a) Absorptivity and (b) Reflectivity as a function of wavelength for Al-doped CdO thin film deposited at different temperature.

$$\varepsilon_1 = n^2 - k^2 \qquad (5)$$

$$\varepsilon_2 = 2nk$$
 (6)

Figure 8: Plot of (a) real and (b) imaginary parts of dielectric constants as a function of wavelength for AI-doped CdO thin film deposited at different temperature.

$$(\alpha h f)^2 = A (h f - Eg)$$
 (7)

Figure 9: Plot of $(\alpha hv)^2$ versus hv of Al-doped CdO thin film deposited at different temperature.

Figure 10: Graph between band gap energy versus temperature

Figure 11: Graph between band gap energy versus particle size

Figure 12: Magnetization loop of Al-doped CdO thin films at (a) 25 °C (b) 100 °C

Figure 13: Magnetization loop of Al-doped CdO thin films at (c) 200 °C (d) 300 °C

Figure 14: Magnetization loop of Al-doped CdO thin films at (e) 400 °C

Figure 15: Combined Plot of M-H loops of Al-doped CdO thin film deposited at different temperature.

Table 2: Saturation magnetization M_s , Remanence M_r , Coercivity H_c and Squareness ratio SQR of Al-doped CdO thin film deposited at different temperature.

Sample name	Deposition Temperature °C	Saturation magnetization M _s (emu/g) x 10 ⁻³	Remanence M _r (emu/g)	Coercivity H _c (Oe) x 10 ²	$SQR = (M_r/M_s) x$ 10^3
S1	25	1.07	1.966	2.40	1.837
S2	100	1.07	5.290	3.12	4.943
\$3	200	1.07	6.345	3.54	5.929
S4	300	1.07	7.137	3.84	6.670
85	400	1.07	8.534	4.54	7.975

Figure 16: Plot of (a) Remanence M_r , of Al-doped CdO thin film deposited at different temperature.

Figure 17: Plot of (b) Coercivity H_c of Al-doped CdO thin film deposited at different temperature.

Figure 18: Plot of (c) Squareness ratio SQR of Al-doped CdO thin film deposited at different temperature.

4. Surface morphology (SEM)

Surface morphology (SEM)

Figure 19: SEM images of Al-doped CdO thin films on Silicon substrate at (a) 25 °C (b) 100°C

Surface morphology (SEM)

Figure 20: SEM images of Al-doped CdO thin films on Silicon substrate at (c) 200°C (d) 300°C

Surface morphology (SEM)

Figure 21: SEM images of Al-doped CdO thin films on Silicon substrate at (e) 400°C

Conclusion