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INTRODUCTION

The vital portion of your Text book of Physics for class
X1 is included in this book of ‘Important Articles’.

Here no attempt is made to write extra information or
high knowledge to impress students. Articles are written
in brief, no details, but to the point, hoping you will
not miss the main points in your exam papers.

I'oot notes and side notes are not for reproducing in the
exams. They are written just for understanding the
related article.

Text and figures are made in such a way so that you can
reproduce easily in the exams. Thirty one (31) articles
have been included for your study.

If you stuck! Just prepare this book, to go through your
exams.

Best of luck. @Cyg
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1- OF TORS CTANG . COMPONENTS

We will devise a formula for addition of more than two vectors,
starting from geometrical work to trigonometric.

Consider two vectors, i

_Aaj. = @ B4
—

A, = OQ ‘_
A ¥R
L e o/
We have done some geometrical work, ;

such as, .y 3 —s 0
1-\2 = 00 =" PR 29‘ Aly:Pl

[ N
=

—
or A

e e —
Auuj/ AT and RS are perpendicular B ox, 0 Alx 1S
Lto Ox , so that PUTS is parallelogram, :
so G ;
PU = T8 = a Fig. (1)
2x
- PT = Us = Al\]
e s
OT = A

—

RU
Also __ i e
oT + T = 0s
" Alx o A2x - Ax
and

H
g
~

coses {l)

or A + essee l2)

Equations (1) & (2) can be written as .

o Alx + Azx oocco(3j < _// A4
A A oA essseld e
y o Ny Ay i L -

From fig.2, taking the case of n vectors, f 4
——

- .
K’l' -KZ' AS' eses A making angles o . =

n

A

n

&l' € Oy eives €&  with x-axis

2t 3!
respectively.

-

Fig.(2)

Generalazing the equation (3), we get A_ = AcosE

X
P T o e T e e X so o
X 1x 2x 3x nx Alx = Alc:osﬁ‘l

= + AR,
or Acos® Alcos&l A2c0592 Ancose-n




&

£ '
or A cosH = {_,,‘Arcos-&f = Ax sennive LD

Similarly generalizing eq,(4), we get

A = A sin0O
= + Erit! - M e B G
Ay T M1y’ oy T %gyT mier f Bay Y

s0
: : ; A,. = A sin0
= 3 + +
or A sin® A151n61+ A251neé see AnSIneh Ly 1 1
= e A (6)
or A sin®& = A _sin = s
{=1 I I Y
Squaring and then adding eqs. (5) & (6), we get
Azcoszs' + Azsinzér = i + A?
2 2
or A (sine + cosze-j = Ai + Ai
or @2 = Ai + Ai [§1n29‘+ cosze- = 1
2 2
= + sasene
or |A Jﬁx A (7)
A
& tan & z—'Al' sssess (B)
x

Therefore to determine the resultant of vectors,

i) Find x- and y-components of vectors,
ii) Add all the x-components to determine resultant A ,
iii) Add all the y-components to determine resultant Ay.

iv) From eqs. (7) & (8), find the magnitude and direction
of the resultant wvector.
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2~ MULTIPLICATION OF TWO VECTORS

We define
Scala duct (or ct):

—
"The scalar or dot product of vectors A and B is the
scalar quantity obtaiped by multiglying the product of the magnitudes
of the vectors by the cosine of the angle between them".

Mathematically' K'E o= ,K”gicos s eevsan (l)

ey —
The two vectors A and B are °
shown in the figure. And

S 1is perpendicular to OP
& RP is perpendicular to OQ

such that —=
= =
A
- -
05 = B ces O = magnitude of the component of B along A....(2)
& OR = A cos 8‘ = ] " " " L K L] E‘...(sj
sSo g
A.B = AB cos & sssnee (4}
& B.A = BAcos & = ABcos & sesune D)
therefore ., yia

A.B = B. ssscae (6}

From eqs. (2) to (6) we conclude that the scalar product of two
vectors is the product of the modulus of either vector and the
magnitude of the component of the other along the direction of
the first vector.

Now we have _, " ~ n
A = Axi + ij + Azk sonen T
i n ”n
- N - D T essee
B =ond .3 B k (8)
then ~ e
2E = (Ax'i+A3+AziE)»(Bi+83+sz)
Ao n~oOA £ YA ~ PAd .
=ABi.1 + ABI1.J + ABi.k +ABI.L+ABRI)
X X - Xy X z Y x Yy
+aBi%k + k.8 sy >
o 4B, 3k AB%.E + AZBZ? '+ A B k.k
S0 AoB =

: : ‘ : Tod =4ij =kak = 1
From eq.(9) we see that the scalar product of two vectors is
equal to the sum of the products of their corresponding components.

1}—§§E%é—0
4 : e TJe - . f
AB +AB +AD ....(9) L el }__qau
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CHARACTERISTICS OF SCALAR PRODUCT
i) From eq.(6) we see that scalar product is commutative,
i s
R R e BA
- =
ii) From A.B = 0 , we conclude that
g
a) either of the two vectors 7\9 or B is null vector
or b) the vectors are mutually perpendicular, such as

> —3
A.B = ABcos 90° = 0
iii) For the vectors A and B are parallel or antiparallel
A.B = ABcos 0° = AB
& A.B = AB cos 180° = <AB

iv) The scalar product obeys associative law, i.e.
-3 - e —
(MA)«(NB) = mPAsE = AumaB ..... (10)
v) The scalar product is distributive with respect to addition,
iees - > -3 - =3
A-(B + C) = A.B + A.C
to prove, we have from ege.
K.B = AB cos 8= A(B cos BJ...(11)
In the fig., we have

Op .= Becos &...(12) E-‘oee egs.(2) & (3)
pg = C cos & .... (13)
O = (B+ Clees & .. (14)

And

Og = ep *. pq
multiplying both sides by A,

0
A(Og) = A(Op) + A(pg) eeee (15) A
From egs. (12) to (15) we get
A(B 't Clees B =  AB cos &+ AC cos 6 ..vi(16)
From the definition of dot product, we get
- - - > =¥ ~—
A.(B + C) = A.B + A sans (.I.T)

which is the distributive law.

Product of force and displacement which is work. It is
a scalar quantity, i,e., Lyl
Work = F.5 = FS cos B ....(18)




% - VECTOR PRODUCT

We define

Vector Product {or Cross Product]:

" The vector preoduct of two vectors A and B is defined
to be a vector such that;

i) its magnitude is AB sin 6, @ being the angle between A and E’,

ii) its direction is perpendicular to the plane of A and ﬁi and
can be determined by right~hand rule.

Mathematically, Kxg = -'Zﬁ/ﬁ’fsin BA il (L9)

A

Right=hand rule (in Vecter Product):
First place together the tails of the two vectors. Then

rotate the vector that occurs first in the product into the second

vector through the smaller of the two possible angles. Curl the
fingers of the right hand along the direction of rotation. The
direction of the thumb will represent direction of the vector product.

?

Now we have 2 _ Ax. + AYS + AZ'IE vesene  (20)
- ~ n
= + + s EE B e
& B B 1 Bva Bzﬁ (21)
then 0 oy ~ ~ ~ ~ ”~ A
it +AF+A i+ B jJ
A x B (Axi yJ zk} x (B 1 By.l + B k)
o~ ~ A AR . n~on AA
= A B ixi + ABixj +A B ixk + A B 3xi +A B jxJ
X% o~ XY AA xZ ~A yx A
+A B 3xk + A Bkxi+aBGEkxj+aBkxk
Y 2 ZiX zZy zz
since 4.5 =k, xk =&, kxi =3
& o Ixi = <k, kx§ = -3, ixk = =3 soove (32)
& fxf¢3x§=fcxf=0
O A B-ABER-ABY . ABReaBtT ARG o ABS
Xy Xz Y X Y 2 Zin zy
AxB=(AB -AB)i+(AB -AB)5+(AB -AB k..(23
orAxB—(AYZ- B Dok g (xy- W «e(23)
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CHARACTERISTICS OF VECTOR PRODUCT

i) The ' vector product is non-commutative,i.e.,
AR xB = -Bx A
In the fig. it is
illustrated that when the
order of the vector product
is reversed, the sign of
the vector is also reversed.

ii) The vector product is
associative, i.e.,

(0 x B) = & x (mB) = m(AxB)

iii) The vector product is
distributive with
respect to addition,i.e.,

-5 e —> —_ - - —y
Ax(B+C)=AxB +AxC
iv) For K xré = Q,

a) either of the two vectors is a null vector,
or b) the two vectors are parallel, such as

AxB = ABsine® = 0O
v) For A and B are perpendicular to each other then
b R ~ ~
A X B = AB sin 9°n = ABn [éee eqs.(22)
EXANPLES :
i) Force on a charged particle moving in a magnetic field,i.e.,

— -3 —
Foo=qvx B

ii) Torque,i.e.,

= —
To= ‘; X K
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4-LAWS _OF _MOTION

Newton's three laws express mathematical relationship among
force, mass and motion of a body.

Eirst Law of Motion:

Statement: "A body continues its state of rest or uniform motlon
in a straight line unless it is compelled by an
unbalanced force impressed upon it".

We define:
ertia: "The property of & body that opposes any change
in its state of motion or rest".

Newton's first law introduces the idea of force as an agent
causing a body to change its state of motion or rest.

EXAMPLES:
1. A standing car will remain standing unless some force is applied.

2. A fast moving bus, on application of brakes, comes to a halt but
the passengers and other loose objects will tend to continue
their motion thats why they will be thrown forward.

3. A bomb dropped from an aeroplane does not fall vertically but
describes a curved path.

4, When a space ship is launched at altitude, it tends to move
with constant speed.

Second Law of Motion:

Statement: "The effect of an applied force on a body is to cause
it to accelerate in the direction of the force. The
acceleration is in direct proportion to the force
and is inversely proportional to the mass of the body".

Mathematically, Ly
F

= ma e )
It tells us that when a force is applied to a body, it moves

in the direction of force and will move more faster as the applied
force remain in function,

In eq.(l) m is proportionality constant and is the inertial

mass of the object. Also this equation tells us for a fixed force,
the larger the mass of a body, the smaller its acceleration.

EXAMPLES:

1. When a force is applied on a body at rest, it moves in the
direction of force.

2. For two balls--rubber and lead--- the same force of kick will
produce more acceleration in the rubber ball.

3. When a paratrooper jumps out of an aeroplane, before the

opening of his parachute, he gains acceleration due to his
weight.




12

Ihird Lew of Motion:
Statement: "To every action (force) there is always an equal and

opposite reaction (force)".

Newton's third law tells us that a body cannot experience a
force from its environments without exerting an equal and opposite
force on its environments. Forces in nature always occur in pairs.

EXAMPLES:

ls In the fig., there is interaction
between bodies A and B.

—
FAB = force exerted by A on B
 F%a = force exerted by B on A
then E? -
A m g

2+ In junping off the ground, we
exert a force on the ground then
an oppositely directed force by
the ground is exerted on us.

Fgl" ('8

A

3. A peratrooper descending with uniform velocity. Here the force
of gravity is balanced by the reaction of air on the parachute.

4. A person holding & body with & siring. The tension and weight

are balanced.
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5- ELASTIC COLLISIONS IN ONE DIMENSION

Let
m; = mass of first body
m = mass of second body
Vo velocity before Ve e
collision of
first body
v, = velocity before bt -
2 collision of 1% 1&

second body

v, ¥ velocity after
collision of
first body

v. = velocity after
2 collision of
second body
We have from the law of conservation of momentum,
total momentum before collision = total momentum after collision

+ m.v = v! o+ v’ Slves
ia g L 275 sl o1 oA (L)

‘. ) e

e o
or ml(vl =N ) m2{v2 v

2

Also from the law of conservation of energy,

total K.E. before collision = total K.E. after collision
or #m V2 + % veoiL 4m Vi m vz2 (3)
171 Ao 1y 279 e
2 na 2 2
or m(vi = W)= mz(Vz - ¥5)

% - ’_= "f‘ ’-— i te e e 4
or m (v, + vll(vl Vll mz(Vé vz}(v2 v2J (4)

Dividing eq. (4) by eq. (2), we get

+ovioml oyl

M Ya ot ¥y
L . ¢
or V’l - Vz = (Vl Vz) ses e (5)
or we conclude
Speed of approach = Speed of recession
Special cases:

Case a): When my = m2
from eq. (1}, we get

¥oEey s vg‘ v eeavie i16)




Adding eqs. (5) & (6), we get

= Vv !
2 vy 2 >
L ’
or ¥ V2
5o Vo Yy

putting this value of vy in eq. {6/, we get

b = + z
/ﬂé Booh 2

We conclude
When two particles of equal mass collide elastically,

they exchange their velocities.

GCase b): When Vo =0

From eqgs. (1) and (5}, we get

i ’ ’
lel mlvi + m2v2 cesse s (7}
L ’ Pl
& Vl o V2 Vl ssssoe (8)
multiplying eq. (8) with m, , we get
o ’ /
mV = mov " vy ssneee (9)

Adding egs. (7) & (9), we get

4 ’z + s
2 mYy o¥s MY
= 7 +
or 2mVv, vy { m, mzi
v 2m (10}
or V, = s v et e O
2 m +m, 1

putting this value of vy in eq. (8), we get
2m

7
v = p V. - V¥
1 my m2 1 1
2m
L e g
or Vi = m Fom Wi 0y
2m = M. = m
/ o 1 1 2
or v = s =V
1 my + m2 X




’ iy 2
or v = v soseeee (ll)
iy ml + m2 X
already we have
, 2m (
V. = v s aseeva lO)
2 ml b g m2 1
A ) When my = m2

From egs, (10) & (1l1), we get

Vioa=aa0

P e

sanswns (12)
& Vo= vi
We concjude:

The incident particle which was moving with V s comes

to rest while the target particle that was at rest begins to move
with velocity Vie
B ) When m2>> m,

From egs. (l10) & (&1}, we get

W Sl AT
J; i l} sEE S & (13}
& v2 )

We conclude:
The small incident particle just bounces off in the opposite
direction while the heavy target remains almost motionless.

e When m, &K My

From egs. (10) & (ll), we get

v

~ vV
o veaviee (1)

o dir

i 1

L R e

We conclude:

The incident particle keeps on moving without loosing much
energy, while the target particle moves with the double velocity.
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5-b: To calculate final velocities in terms of initial velocities &
masses of the bodies colliding elastically

When two objects collide and the initial and final velocities of both are
parallel or anti-parallel the collision is said to be one-dimensional. The
collision of two boxcars on a railway track is an example of collisions in one
dimension. Generally, the collision of any two bodies that approach head-
on and recoil along their original line of motion is one dimensional collision.
Although these collisions are exceptional, but they display a simple way of
some important features of more complicated collisions.

In an elastic collision of two particles moving along a straight line, the
laws of conservation of momentum and energy completely determine the
final velocities in terms of the initial velocities.

If the net external force on the system of masses is zero so that momentum is
also conserved, for one-dimensional collision, then from laws of
conservation of energy and momentum, we have two equations.

mviT vy = vy v, L)
Yomy it + Vo ms vyt = Vo my V' +‘/2m2v’22 aE)
from egs. (1) & (2), we have

mp(vi- vy )= m (Vs - m) e 3)
s (v12 - V’;Z )= m (v’z2 - vzz) ..... (4)

dividing eq. (4) with eq. (3), we get
v+ V’[ = sz'f" Vol e s e (5)

multiplying eq. (5) with m; and then with m, , so we get egs. (6) & (7)

m(vi+ V)= (vt v v (6)
Mt S mo it ) e (7)

Subtracting eq. (3) with eq. (7), we get

Vi = - mg)vy + 2(mp )w L (8)
my +omy my +

Adding eqs. (3) and (6), we get

v, = 2(my vy t(m - my)wv, s (9)

my + m; m1+m2
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6- MOTION OF A BODY ON AN INCLINED PILANE

We define:
Inclined plane:

"Sloping surface used to reduce the effort of moving a load”.
To prove @

Constant motion requires no force. Or moticn along @ horizontal
plane is constant.

Galileo observed the
experiment as shown in
the fig.

In the case of a
plane that slope down-
ward, there is a cause
of acceleration. The
plane sloping upward Initial position
there is retardation.

In the fig., a ball
tends to rise to its
original height regard-
less of the slope.

In case of horizontal
plane there should be
neither retardation nor
acceleration and the
motion should be constant.

For the planes with downward and upward slopes, the cause of
acceleration and retardation is the force of gravity. However in
horizontal plane for constant motion requires neo force.

To show that :
The force can be diluted by decreasing the angle of inclination.
Q-.

Consider a body of mass m sliding
along an inclined plane having an
angle of inclipmation €. Neglecting
the force of friction, the force
along the plane is,

F = mg sin & c.-oto(l)

The maximum value of sin €& is 1 °
corresponding to €= 90° & the
minimum value of sin © is O
gorresponding to & = 0°.

o = i D = 3 o =
Fmax mg sin 90 mg & Fmin mg sin O 0
As ©& varied from 90° to 0°, the force varies from a méaximum
value to zero. i.e.,
the force can be diluted from its maximum value mg to ény desired
value by selecting the angle of inclination &
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7- PROJECTILE

We define:
Projectile:
"An object launched in an arbitrary direction in the gravitat-
ional field of the earth with the initial velocity having no mecha-
nism of propulsion". v
Let
v. = initial velocity of
1 the projectile

& = angle of projection v
with horizontal o
- Displ e >
To calculate, | e BE
V, = Vcos 8 Mg
the velocity v & angle § V, = Vsing LN Yy
(at any time t), we have '2
= + = Tae
Ve v, at & §. Vit + 4at .e (1)
for x-component
Vo S Wiy i) & = v crense (3)
& for y-component 5
v = Vv, =gt c.cal4d) & v t= gttt i 08
vy Viy ~ ¢ ¥ iy g (3)
We have
V T V. COS & se..se (6) [A = A cos &
X i b
v = V_Sin & - gt Sssee s (7)
Y i
So v = VX s VY
or. V. B v.cos & .t (visin & - gt)

. ) - CEET L 2
or v —J(vicos 9)F iy (visme gt) [;\-Ax + Ay

= jvicos2e'+ visin2e-+ 92t2 - 2v,gt sin ©
2 Zx

fjvi{cos e+ siHQBd - thviSin Gatt

or

for angle

I
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To calculate the path (trajectory) of the projectile:
We have from egs. (3) & (5),

*E e = A
v,cos et (10} [AX cos O

x =
& y = vsinet - Fgt, if1n) [A = A sin O
y
from eq.(10) X
vicesﬁ'

putting this value in eq. (11}, we get

)rfsin e X e
e g
¥ cos V.COS
i i
x2 2
or'y = x tan & - % —92— SEC B Leeesen U12)
i
9 2
pub a = tan B & b = senes SECTE
2vi
@ & b being constants, we get
2
y = ax = bx vhereve L1L3)

which is the equation ef a parabola. So the trajectory of
projectile is a parabola.

To calculate maximum height H :

We have from eq. (4)
= si -
Yo v,sin & gt
since v becomes zere, so
. 0o = visin & - gt
v sin &
or t = ——de— eewevas (14}
e have from eq. (1i), as

v visin &Gt - irgt2
putting y _ =H and value of t, we “get

T
(visin &) visin (C o ngvigin Ea
9 . 9%

H =
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v?sinze» vzs inze-

L e
or H - -&#_!?,_
visinze- :
or ([H = gea— vivene 415)

To calculate range B of the projectile:

2
Yy = x tan 6~ % —9-—§-sec29-
Vi
for horizontal case, y = @, so

2
0O =x tan & - 5-9-2-’{ seczer
v
i

Taking eq. (12)

or (tan & = f-%Lsecze—)x =0
of ]
Either x =6 [which is point ef projection (0,0)

or tan &~ +24- sec’e = 0 .eeeian (16)
v
i
the value of x = R ; the range, so

tan & -~ % g sec26~= (6]

Vi
2V?tan & ZV?sin e-x cofé—
or R = om0 T
g sec @ g ses €
2 V?sin & cos &
oer R = coesss (17}
9
since sin 2 @ = 2 s5in Ocos &
v:sin 2 6
SOR 1"'_1""—-"—' S8 s8 (J..S)
g
Maximum range, R 1
max
In eqg.(18), vy and g are constants. For R maximum sin 2 & should
be maximum. And the maximum value of sin 2 & = 1 =2 &= 90°
So s or © = 45°

Hmax = —-al'-- Oii(lg)
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8~ CENTRIPETAL ACCELERATION AND CENTRIPETAL FORCE
We define:

Centripetal acceleration: fcceleration directed towards the centre
of a circle? -

Centripetal force: ‘A force that causes a body to move in & circular
pathy

When a body moves along a circular path, its direction of
velocity continuously change. From the definition of acceleration
change of velocity produces acceleration, which is called centripetal
acceleration.

To calculate the magnitude of centripetal acceleration:
Let

m = mass of the stone
= angular speed of
the stone
r = radius of the circle
v = its linear velocity
along the tangent
Vo= velocity at point A
Vo = velocity at point B

since two velocities at points
A and B are same, so

Vl = V2 Eleh c--’o'o(l}
from figlb), we have
- -
ki =
Fi AV v2
- -
or AV = V2 Vl 000000(2} .
Now ZAOB = <ZDOE = &g A theorem:
Angle between the
For amall angie perpendiculars of the
chord Av = arc DE ....(3) sides of an angle is

equal to that angle.
and sin B = 6 b-c.(4)

We have

i av
sin & =

Taylor's series expansion
Vo for; ?
e e

i - - — Fom— - PR R
oin @ - Igim1 | TE
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putting the values from eqgs. (1}, (3) & (4), we get

e = “:
for small change
val = av t'ofogn'.(fl) 6 =aB
multiplying and dividing by at +to L.H.S.,
we get AG i
vAﬁ—At = AV
or oV = v wt -0'00(6) [L\)= “"""S_‘
or _AZ"‘E,'- = WV -o-oc(?j
Now we define 0
- v
a - t ...I.(S)
89 a = Wy c-noo(g)
v Ve
or a = LJZI,‘ = —r—] s-o--(lO} or = “_\;"-’
In vectorial form 2o
? = -Lazr = -—'yzr seesa(ll)
r

where ne?ative sign indicates that the acceleration is towards the
centre. {Indicated by angle 4.in fig.(b).

To calculate centripetal force:

We have :
‘l—:, = m‘é’ seesee {12}

from eqs. (11) & (12), we get

? = —mwz;) = ..--r-n-;-—_l" l-ioit(ls)
r

o B2 8 cibsealla)

c T
EXAMPLES:
l. A stone is whirled in a herizontal circle by means of a string.

2, Planets move around the sun.

3. When a racing car moves round a circular track the friction at
the wheels provides the centripetal force.
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9— NEWTON'S IAW OF GRAVITATION
Statement:

"Everybody in this universe attracts every other body with
& force which is directly proportional to the product of their
masses and inversely eroportional to the square of the distance
between their centres".

Explanation:

If two bodies of masses

mand m, are placed at m my

\

ko A EZj:
I}:-::,'—‘)F?"-' o= dML
1% (v

1
& PO(——2
I

1
a distance r from their
centres, then the force of
attraction is given by

Fom

Combining the two  proportionalities,

m.m
F d_izg‘ es e Ee (.E.)
I

m. m
or F —:G—-—&zl e cenn (2’
I
or in vector form, _, mm. o
: E = -G-Lzz'—r Teas s (3)

where G is proportionality constant, called constant of gravitation
or universal gravitational constant. Negative sign indicates attract-
ive force.

GCalculation of G :
In the fig., we have
A light rod having length 1
is suspended with a quartz
fibre. Two identical balls
each of mass m suspended from

rods' ends. Heavy balls each

of mass M are brought near
the small balls.

Points A, B & C shows lamp
and scale arrangement.
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Magnitude of each force between masses M and m is

P = GMm s s e e (4)
b
the value of torques are .
- G M m [T: 3 lihd
To= ) % +
T
. GMm]1
rzl = r2 2

where 1/2 is moment arm. (1 being length of rodj.
So total torque, T, is

i - SMml GMm L
Trur b= 2525 ¢ 7 2
2 T
el _&ilgfa_ 1 caseieu(B)
r

Now force due to M and m produce torque which causes a twist in
the fibzre.

The twist © is proportional to the torque )

T el
or T=c¢c6 evewn . 16)
where ¢ is torsion constant and can be calculated.

From eqgs. (5) & (6), we get

G Mm

--2—-1 = ¢ &

T
{ Gi“r2

or G = —m ssese 7}

is measured by lamp and scale arrangement.

can be calculated from the material of the fibre.
is distance between M & m.

is length of the rod.

M & m are masses of heavy and small balls.

I-JH(‘)CQ

The value of G found from this experiment is

6 = eelas0 N Wk
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10~ WORK DONE AGAINST THE GRAVITATIONAL FORCE

To prove that:

The work done in a gravitational field is independent of the path

followed by the body.

or
The total work done in moving a body along a closed path
gravitational field is always equal to zero.
Llet e

We have a gravitational field 6
in which a body moves from point A
to C through two paths.

To calculate the work done
in taking the body from A to C,

37 wA+C ; W.done directly from A to C

dz

W. done from A to B,

ii) w '
AB2C" then from B to C. 2 00°
We have é
- = Fd |F=w w
hse *
- wWed d
= wd cos & cos & = —Ei
S0 W g T dl"' (1) or dl = dcos &
And ik --9‘&;
Mg 7 Fedy
_’-—-’
= w.d; - &= 0
= wdlcos o so cos &= 1
or WA B = Wdl tew s (2)
2 —
And Wy e = F.a; i
L Led e o
=owd, = oW 2603 fes BOdiEp
or WB—*C = 0 Censwsaeiltdy
So from egs. (2) & (3), we get
quB*C = w dl b S =W di ress (4)

From eqs. (1) & (4), we conclude that, the work done in a gravitational

field is independent of the path followed by the body.
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Now work done in moving a body from C to A is

W = F.d
C—A R
= w.d & = 1BO°
=wd cos & or cos = -1
e & d cos &=d
$0 Ue sy wd,  e.u(5) 1

The total work done in moving the body around the closed path ABCA is

| = + W HoolWe
Viotal WAaB B=>C CA

From egs. (2), (3) & (5}, we get

Wtotal =W di + 0 + (=w dl)

w dl - W dl =0

0 Wtotal > o

Thus, the total work done in moving a body along a closed path in
a gravitational field is always equal to zero.

Conservative field:

In which the work done between two points in the field is
independent of the path followed between the two points,

Examples of Conservative fields are:

i) Gravitational field
ii) Electric field
iii} Magnetic field.
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11~ KINETIC ENERGY

We define:
"The kinetic energy (K.E.) of a body is the energy possessed
by @ body due to its motion™.

Llet

A body of mass m is
moving wi%h initial velocity
Vo constant force F

1
b

5
be applied to stop the bedy, ‘
the acceleration produced is —"‘#tiﬁ::l:zzﬂ___
R ) PRt i
a = = e [F = ma o
m
The body comes to rest after
covering a distance d.
So we have
Ve o [0
o F
STm
S = d
v,.o=
Using the equation, 5
) = 3
Ve vy 2a
putting the values 2 F
C - v e P
m
2
or Fd = 5%

F d 1is the work done by the body before comming to rest, which
must be equal to the energy possessed by the body due to its motion,

SO
KBy e fmvﬂ Vi evesiD)

Its a scalar quantity. And the units of kinetic enerqgy are the
same as those of work.
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12~ POTENTIAL ENERGY

We define:
"potential energy of a body is the energy possessed by it due
to its position in a field of force or by its constrained state™.
To calculate
Gravitational Potential energy (P.E.),
Let

In the gravitational field,
@ body having mass m
is raised  through height h
from the ground. u

Here the weight is balanced
by the force,

F = w

S0 the work done against the
force of gravity is

wh = magh

This work done is due to the change in position, which is called
gravitational potential energy,

P. E. = mgh e e (l)

Absolute Gravitational Potential Energy :

We define:

"Energy required to move a mass from the earth up to an
infinite distance".

To calculate the value of absolute
gravitational potential energy,

i
Consider ;

A body of mass m i

which moves from point 1 to o
far . off' peint N 2

As gravitational force changes
with distance, so divide the
distance between 1 to N into
small steps, each of length aAr.

1

]

A

We have : P
rz- I'l=Arr cs 6w (2) /(-l ----- 1.y

and the mean distance \"//
I, ¥ 5
o= 5 veneeld)

with constant velocity in the '"r;:::izgzzg:]
gravitational field. : !
!
b
I
1
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From eq.(2), we have

T, =Ar + T, vesevew i d]

putting the value of r, from eq.(4) in eq.(3}, we get
b i B B P o

T e 1 .
T s e
or 1‘2 = ( L 2 j‘)
_ 2 AR
2 22 /
20002 L AaT)” |
or r = rl b 4 T I‘IAI‘

2
Neglecting Lé.:.ﬁ as {AI‘)2<< rf s

2 2 o L
i + rl( r, rl) [fro.n eq. (2)
- /';12/"' Eits 7 }f/
2
or T = rlrz tsss e (,5)

Now, if Me is the mass of earth, the gravitational force at the centre

of the small step is : n M
5 E 7z .6 sinna (6}
o
From egs. (5) & (6), we get moM
F = G — oo es (7)
T2
As this force is assumed to be constant during A r, so
m M
= ey )
Y G e lazl
1
m Me -
= G (r. =1 ) from eq.(2)
T
s 2 1 Atod ik
-4
or W = aMm (= =l ‘*h{_"_:dhmt“"» [
122 e I‘l I‘2 A %,
1 1 “dhmcr’i{
Similarly B G e ¥ A
2 e T, Lo LodLame (%}“{’lj
1. L L
l = GMnm (—— = —=—
l354 e )
o -’i.‘.....i
VHN-I'}%'N Mt I, r !
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13- MOTION UNDER AN EIASTIC RESTORING FORCE

Consider
A body having mass m
attached to one end of a spring

and placed an a frictionless
horizontal surface.

When the mass is pulled
through x,

e

From modified form of Hook's
law, the applied force F is

F =k x senes(l)
where k is spring constant.

Due to elasticity, the
spring opposes the applied
force. This opposing force
is called restoring force,
Restoring force = F = ~kX...(2)

In fig.2, mass m is pulled
towards right with some force,
the extension gives rise to
restoring force.

Some work will be done in
displacing from equilibrium against
this force. It will be stored as
its potential naneargzl.i When released
this PE changes to KE. At equilibrium
all PE converts to KE. Due to inertia
it will move towards left.

When compressed whole KE changes
to PE. The process is repeated and
the mass continues to oscillate
between the extreme peositions.

To calculate the acceleration-a

i i
m
* m
7777 e

(
We define, Hook's law as
"Within the limits of perfect
elasticity strain is directly
propertional to stress",
or stress oK strain
stress _
or  Thmaen T const.
a =
lfL £
FL -
la = E
L, a & E are const., so
Fec 1
or F=5k 1
or F =k x
We may call it the modified
form of Hook's law.

of the mass, we have y D A
o
F = M3 cevese (3) P 75 I/
From egs. (2) & (3), we get ; ‘ X0
- k x = m a ra T I 4 G 7
se 00 J “ 4 0] A
or - 4) 7 'A 1 '
or @ = ~(comst) x < jjmmoﬂmmm;i J
or a ol =x : 77> sy

or a ol - displacement
Such a metion in whic

and is directed towards the centre is

acceleration is proportional to the displacement

called Simple harmenic motion.
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14- SIMPLE HARMONIC MOTION AND CIRCULAR MOTION

To relate SHM with circular motion
Consider

A point P meving along circular
trajectory around the centre O, with
angular speed &J.

The radius of the circle is r,
speed of the moving point P is

=2 esessse (l)
Yo (N
Consider the motion of the point Q,
the projection of P on the diameter AB.

As P describes a constant angular
speed (W, Q oscillates to and fro along
tﬁe diameter. As Q moves away from O,
it slows down, & as it moves towards O
it speeds up, i.e., its acceleration
is directed towards O.

The magnitude of acceleration of

the point P is v
a, = =B = r‘agz [Vp =1

< >
Its component along AOB is

2
a = rwecos O
Since it is directed towards centre and x = r ces 6, so

Sl

Thus the point Q has an acceleration proportional te displacement
and directed towards the centre, which is the characteristic of SHM.
So the projection of P executes SHM. We can define SHM as " the
projection of uniform circular motion upon any diameter of a circle”.

To calculate time period T of Q , we have

e o Lo .
C‘J-— t OI: t - fAJ ¥ & _— 2Trad.
LB |
SO T = ) ssess s (3)
From the fig,, the instantaneous displacement x is
O X . = P CoSIt . auessse (%) [é-=<0t
The speed v of the point Q, (from the fig. )
v = v s8in 6 er v = rwsinudt s elawe (B)

2

2
orv=rwm sin‘e + cos7Er = )

from eq.(4), coswt = x/r, so I;r sin G- = 1 = cos’s
= 4,43_{;,”_'?&,;;% e

Ve e el L e L
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15~ CTERISTICS OF S.H.M. OF A MASS ATTACHED TO A SPRI
We have ( from eq. 13.4 amd 14.2) ’
a = e X
& a = -(g2x
Comparing the above equations, we get
W = Jk/m esssse (l)
So, the time period of the mass attached to a spring is
=
= W
B
or T = 2“}!!/}{ tecse (2)
In the equation x = r cosawt , putting r = x,» We get
X = xocosmt

or ]x = x,c0s[k/m x E_[ Saveea {3)
The instantaneous velocity,
J’z’"z"_
Voomayrs e R
or V. = ’k/m j;?ﬁ—:ﬁixz S
—_— 1}
or v - xofk/m ‘{l - x2/x°21 s s es (4)

its maximum velocity , v, when x =0, as

From egs. (4) & (5), we get

v = VQJ-L s 3(2/;(3 sesss e (6)

The kinetic energy is 2
U KeEe = A m ¥

&)d'xf k/d (1 - xz/xg )

L
*‘ k XE( 1 —‘—xzj ,-....(7)
X

Eq. (7) shows that the kinetic energy is maximum, when x = O,

i

or K.E.

)(K-E.)max = #kxfl cocne o dB)

the kinetic energy is minimum, when x = x,, (from eg.(7),

FK.E.)min. = o[ e ()
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To calculate P.E., we have
=ik i
for x =0, F=0
for X% = x, B 2ok
Sp average force is iy
= ——-———l =
Fav- 2 ﬁh k%

Work done in displacing the mass through x is

W. done = #kx.x =4k x2
which will appear as potential energy, so

P.E. = i’ k x2 LR B N (10)

It shows that potehtial energy is maximum when x = x,»

The potential energy is minimum, when x = O,

{(P.E.)miini = ﬂ creiiia (1)

Total energy at any displacement x is
E- = PE + i KE

2
2 2
= #kx” + #kxS(l - X))

Xo

or ’—f - é‘k_%ﬂ eses e (13)

From egs. (8), (11) & (13), we see that :

The energy oscillates back and forth between kinetic energy
and potential energy but total energy of the mass remains constant
everywhere.

e
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16~ THE SIMPLE PENDULUM

We define:
"A simple pendulum censists of a2 single isolated particle
suspenﬁed from a frictionless suppert by a light, inextensible
string”.

When a simple pendulum is
disturbed from its mean positien, e
it perform a vibratory motion. 5\
. LA
e

To show that

The motion of the beb is
simple harmonic, ; N
Let the bob is at positien B
during its vibratory metien., '

Two forces are acting on the bob. L_,{,k_\is
i) Weight mg of the bob in l.:_:,_‘.'.‘;""\mgwsﬁ
vertically downward direction A mg 2o

ii) Tensien T acting along th
string :
mg is reselved inte two components
Component of mg along the stiring
" * " perpendicular " ® = mg sin B~ .....(2)

H

mg €08 O cewanil)

Since there is no motion along the string, so

T = mg cos &

We have

F = ma sssees (3)

sin O is responsible for the motion, directed
positien, so from egs. (2) & (3), we get

Ma = - plg sin 6~ 8 = 6
a = =g sin & or x.= 1 6
or 6= x/1

We suppose that angle & is very small,
Taylor's series expansion for,

g sin® =28,
a=-g@‘=-gi‘£ sine-::e-sf +-3T~ooc-o
9
or @ = -3 x Seneven (4)

From eq.(4) we see that the acceleration is proportional to the
displacement and directed towards the mean position, so the motion

of the beob of simple pendulum execute Simple Harmonic motion.
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To calculate time peried of simple pendulum,

We have from SHM ,
2
a B Gy i (5)

Comparing egs. (4) & (5), we get

Bt s efl

or Lo =I§7i' te s Es e (6)

We have time period from SHM

v
T' = —'%3__ teEas e (7)
From eqs. (6) & (7), we get
N

T = jE7T__

2n (/g Geinva(B)

H

oxr T

Eq. (B) shows that the time period T of simple pendulum,

i) is independent of the mass
ii) depends upon the length 1
iii) depends on the value of g

B¥ determining T and 1 we can accurately measure the value
of g at certain place.
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17—~ TRANSVERSE STATIONARY WAVES IN A STHETCHED STRING

We define
Stationary Waves:

"javes apparently standing still resulting from two similar
wave trains travelling in opposite directions”.

Transverse Waves:

"A wave in which the particles of the medium vibrate at right
angles to the direction of travel of the wave".

To make

Formula for velocity v
general formulas for wavelength A
and frequency f of transverse
stationary waves.

Consider a string of length
1 which is kept stretched at two

ends so that tension in string is T.

In fig.{(b), string is plucked
at the middle, the string vibrates
in one loop, with a frequency, say

f,l.. y SO
AL .
1 =% and v fihl
or )i = 21 or v = flx 21
4L Ly
or Al T --(_l)or fl 21 00(2)

In fig.(c), string is plucked
from one quarter, then it vibrates
in two loops, with a frequency,
say f2 y SO

1 = A and v .= f21\2= le

2
= g o, S e dl
°‘-‘)‘2 1 or £= L § 2 %
iy 1 From eq.(2),
oL A2 2 wstd) we get,
£, © Zfl"(4)

In fig.(d), the strimg is
plucked in such a way that it
vibrates in three loops, with
a frequency, say fa s 80

PH— f)\ )

Fig.(a)
P A
‘\\\“-ﬂ__ﬁ_____,,f—’:;4Q
== e
: <= 2
Fig.(b)
Plﬁi Az u Al “Jﬂc
l r“A. e
Fig.(c) e
Az Az Ai
P}/_—_\ fo
Ng N3 Nz i N
g o
Fig.(d) é 5 A}
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1 =2 A andv=g - AL

or A= B s)er £ =3 5-=231..(6)

Rewrting egs.(1),(3) & (5) dnd . (2), (4] & (6)
Ay ’fl fnd i
Ao 2 -%*" £, 2 2%
Ag = -:"-Jg- £ st

Generalizing the above egs., we get

i bl
B: Tl t.t;-t(?) And fn 200 fl csess (8)

Now if m is the total mass of the string, tension T and length 1,
then from eq. (9), we have

-

We have
v = |- L (o) 5
m! v =VvX :\Li S = v§/ 1
= or v = S/t=—F—
Putting this value in eq.(2), o i *
we get . o v2=~¥-x1
e A
cealll) = ax] [a 5
T F =
or = E x1 (;r . :aﬁ o
From eq.(8) we conclude that m m
we can have only quantized i v2 Tl
frequencies on the stretched 9 m
S‘tr:Lng- i.e. fl; 2f1,3flosoo-| ey
fl is called fundamental and so Vv =H—‘L AT G

others are called harmonics.
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18-~ NEWTON'S Fi OR
We define:
Sound

"The series of disturbances in
matter to which the human ear
is sensitive'.

The velocity of sound waves
depends upon the density, £
of the medium.

Also it depends upon the
elasticity, E of the medium.

Following is

Newton's formula for the
velocity of sound in fluids,
i.es, in liquids & gases.

"Velocity of sound is
directly proportional to the
square root of the elasticity
and inversely proportional
to the square root of the
density of the medium".

Mathematically,
ool e )
o} 4 Wi

(Eu_qﬂ

i) 0 1

TY OF SOUND DS
We define:
oL BABE.
BESLLy = Selune
m
ox f -2

Elasticity(E): The property

of a material body to
regain its original condition,
on the removal of deforming
forces.

Bulk modulus:
Elasticity of volume.

Young's modulus:
Elasticity of length.

Rigidity modulus:

Elasticity of shape.
Stress: The distorting force
per unit area set up inside
the body.

Strain: The change produced

in the dimensions of a body
under a system of forces.

v

compression rarefact
P Psb? f )

V4 k) Amphtude

e

s

Newton assumed that sound waves
travel through gases in such a
condition that there is no change
in temperature (isothermal).

o
Ve

Isothermal process:

The process in which the

temperature of the system
remains constant.
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To prove: -~
Elasticity of volume, E 1is equal EEIEELE.&EE:
to pressure, P, The volume of & given
Consider the volume V of the air mass of a gas is inversely
at a pressure P. proportional to the pressure,

if the temperature is kept

For constant temperature, if we Gonstant.

increase pressure from P to P + p, 1
the volume will decrease from V to b % v
V - v, we have from Boyle's Law,
i or pV = const.
P Y Po¥s i
or PV = (P + p)(V = v)
or M =‘-}VV/-PV+pV+ pv
Neglecting pv as pv<{P & V, we get
Pv =.pV
V
or Poiameaap 5
R stress
= = = E
o ¥ v/V strain i
SO p o E srES s b (2}

From egs. (1) and (2), we '‘get
e

v =J ;; S smienaes (3)

There is difference of 16 % in the theoretical value of velocity of
sound in air determined from the above formula and the experimental
value.

Laplace's correction:

"In calculations of the velocity of Sound, to use coefficient
of adiabatic and not to use isothermal elasticity".

Sound waves move  as longitudinal Adiabatic Process:
waves. They accompanied by compressions
and rarefactions. At a compression the h tAfgroceistin WhiCht"Df
temperature of air rises and at a tga . sgws MEG 9 ot 9
rarefaction temperature decreases. So il s

constan} temperature does not maintain Specifi eat at constant
and Boyle's law is not applicable. .
Instead of PV = constant, we have pressure,C *
¥ It is the amount of heat

PV® = constant .....(4) energy required to raise the

temperature of one mole of a
gas through 1°K at const.pressure.
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If we increase pressure from P to
volume will decrease from V to V - v,
so,

Y ¥
PVE = (P + p)(V - v)
B¥= (v p¥¥L -
)T

or

L A

F v

= (P + p)1 =

or

From Binomial theorem, we get

- 1)

Vv
e T e

Neglecting squares and higher powers
of (v/V) as v<<V, we get

P = (P+pHl-¥Y=r)
or }/ =,P/— P'f% +p - p‘X‘%r

Neglecting p}/"‘r';" as pvg<P & V,

P
P stress
or ¥P = e e E L H8)

From eqs. (1) & (5), we get
sec e (6)

which is Laplace's modified
expression for the velocity of
sounds,

If we put the values in the
above formula, the theoretical
value agrees with the experimental
values -

So Laplace's correction is
correct.

Pt p

rSpecific heat at constant

volume, Cv:
It is the amount of heat
energy required to raise the
temperature of one mole of
gas through 1°K at constant
volume.

a

Gl
v

\
We define:

We have

Binomial series expansion:

(1+x)n=1+%x+—(——-—)-n2'2'l x°
nn-1)(n=-2) 3
" 142.3 £ Lino
To prove: 5
PV' = const.

1f we have one mole of a gas,

then for adiabatic process,

we have
Q = nCVAT T PAV. vo.{1]

for small change per unit vol.
dQ = CVdT + P dV

. for adiabatic change, we have

dq = 0= CdT *+ P dv
or CVdT + P dV = O...(2)

Now we have for one mole;

PV = RT
differentiating it, we get
PdV+ VdP = RdTl
L pdvR+ Vv dp
or dr = EALE AR . (3)
o) v
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The speed of sound varies with the

temperature of the medium. -~ From egs. (2) & (3), we have
va]T SoBUs e L Lo
or more exactly v Cp e
v =JT
— + + = =
@ v T L G,PdV + C WP + C PdV - C PdV=0
= sss0e + P =
& v, m (2) or C VdP Cp dv = 0
Dividing eq.(1) by eq.(2), we get ©
g eq Y €9 ’ ge orVdP+Cp PAV. .0
v T v
AR R B e ) c
T2 T2 put --52 = 25/;
v
The speed of sound in air o
increases by .6l m/s per degree VdP + ¥PdV = 0
rise in temperature. LD:widil.'ag throughout by PV,
We have
e L¥dy .
For 1° rise in temp. ch&nge in v = .61 m/S * v o
s P i W Eae e Integrating, we get
€esQ.

Speed at 0°C, v, = 330 m/S

log P+ ¥log V = const.

" * 1°C, v, = 330 *+ .6l = 330.6l m/S or log(PV ) = const.
" "R, v, = 330 + 2x.61=33l.2 m/$ or taking antileg,
B "
- Yot 2089 0 By, bt PV‘( = another const.
So v, =¥, + .61t 4o
¥
or VQ = Vt oo t6lt Qut-tt(s) A Pv = Cons.tant.
=
We have m
From egs. (2) & (iii) we see that =
E and £ are proportional to
pressure, so the speed of sound o FPeli/N....\1)
is independent of the pressure. Sy By L Ll

or.. P c(,l/V ao--o(ii)
From eq.(i) & (ii),we get

P XS

sarees (141

i




44

19~ DOPPLER'S EFFECT

Statement:
"The change in the pitch of sound caused by the relative
motion of either the source of sound or the Observer is
called the Doppler effect".

Explanation:
R e sy

It is observed that the pitch of sound of a whistling train
approaching a Observer increases and when the train is moving away
the pitch decreases.

Illustration:
Consider this effect under the following cases:
1) Observer is moving towards a stationary source

When the Observer is moving j : L
towards the source wit NS s \ = e
velocity =1, “' N7 N (7‘!’_ '
Now Observer receives more ‘ ' :
i

waves in one second than he :
is at rest. H:’/_.\Uq z; (3 B e
So ‘ LL H

o distance tra ed SEC.
Additional waves =
avelength
- Lo i v v =fA
- A or f = v/’\

Since v = Af or )\=-¥-' ) SO

Additional waves = -Q”—”f

And the pitch f4 of the Sound heard is

- Vo, _ Mg
fﬂ = f o} v f = (l + V‘) f
or|f y i by, e D

As fn > f , therefore the pitch of the sound heard by the Obgerver
will increase.

2) QObserver is moving away from a stationary source

If the Obsarver is moving away from the stationary source, the
sign of LLO should be reversed, so that

o=y Gt @
£ = == @
As fg £ f , therefore the pitch of the sound heard by the Observer
will decrease.
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3 ) Source is moving towards the stationary Observer

Let e oo oo Vomm oo - -

Position of the source be S — s '
- NN
s s a BRCEICELLAE

frequency emitted by the source = f

. velocity of the source = tlg ‘-E:j:?..(_azl :
velocity of the sound waves = v | i Sj:/\ /\\. S .
If the source is at rest, ' 5y (b5 SN N A

lg'

then from fig.(a), we have

_ Distance which f waves occupied

= Number of waves
No. of waves during ene second is f
and occupy a length v, so
v
A = e
If the source was moving towards the onserver, shown in fig.(b),
f waves emitted now contained in the length (v - u‘s), S0

S v - Ug
A £

The changed frequency £, 1is given by

£ LN v i v.x £
2. A !_%Jis V-l
or #es e s e (E)

As f, » f, therefore the pitch of the sound heard by the Observer
increases.

4.) Source is movi awa m stati rv Observer

i he sign of
If the source is moving away from the Observer , %
usshould be reversed with the result that

. v
fD ] v+u_f seon e (Ar)

As f. £ £, therefore the pitch of the sound heard by the Observer

will ﬁecrease' i
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Applications of Doppler's effect:

1. Applied to light:

The frequency of light from certain stars is found to be slightly
more and from other stars slightly less than the frequency of the
same light emitted from the source on earth. Their velocities can be
obtained from this frequency difference.

2. Ultrasopnic waves from a bat:
A bat determines the location and nature of objects by sending
ultrasonic waves.

4 e i f radar waves:

The frequency of the reflected radar waves is decreased if the
plane is moving away and increased if it is approaching. From the
observed frequency difference the speed and direction of the plane
can be calculated.

4, Detection of submarinpes:

When under-water sound waves (sonar) are reflected from a
moving submarine, we can detect its location.

B ies of earth satellites:

These velocities are determined from the Doppler shift in the
frequency of their transmitted waves.
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20~ YOUNG'S DOUBLE SLIT EXPERIMENT

We define:
dnterference:

"The phenomenon in which the two waves support each other at
some points and cancel at other".

To obtain interference of light waves,

the following conditions must be ful-
filled.

i) Sources must be phase coherent.
ii) Sources should be monochromatic.

iii) Linear superposition should be
applicable.

Young's double-slit experiment
gives the experimental evidence for
Huygen's wave theory of light.

The experimental arrangement
is shown in fig.(1).

A screen A with slit 3, is
placed in front of a monochromatic
source of light.

The cylindrical wavefronts
emerge on the other side of screen &.

These wave fronts arrive at screen
B, which has two slits Sl and S_.

2
.L 2

coherent sources. These

We define:
Phase coherence:

Producing of two waves
of same wavelength and time
period at the same instant.

Monochromatic:

Light consisting of only
one wavelength (or colour).

Superposition:

Combining the displace-
ments of two or more wave
motions algebraically to
produce a resultant wave
motion.

e

Cylindrical wave front:

A wavefront whose equi-

of coaxial or confocal

fylinders.

phase surfaces form a family

wavefronts produce inter-
ference. The resulting
interference pattern is
obtained on the screen,
consisting of alternate
bright and dark parallel
bands called fringes.

To obtain

Qualitative description
of Young's experiment,
see fig.(2).

Consider a point P
on the screen. The waves
reaching at P have
distances SLP and SzP.

SGLTCE
& o

Ll
lr\"‘}‘\\i-l
ik
/ o
L
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The path difference is

- SzP SlP sesael(l)

SLQ is drawn perpendicular to 32P

D is distance between screen & slits

& d is distance between two slits.
since D> d

SP=Qp

i
*
Also S2Q d sin &

-

S0

e (20

From egs.(l) & (2), we get
32P i slP = o sin 8. .. (8)
for P to be bright fringe,
for constructive interference
d sin 8= mX\ cieeila)
And for dark fringes,
d sin €= (m + $)A vees(3)
m=0y4ly25e00e0

i.es

Now from fig.(2),

Y
L gl
or Y. = D tan 6&
or sz D sin e;ﬂ -etto(éj

= #*
since & = e
so Y, T D sin &

from eq.(4), we have
sin & m A/d
= BA . 0AD
Yo d d
Y
From eq.(8) we can calculate A .

Eq.(?) is:

-003(7)

d Yiava )

Similarly : Position of mth dark fringe = y

And Fringe width = Y. ®

.

Constructive interference:

The interference of two waves,
so that they reinforce one
another. Its condition is

path difference,d = m s
m=0,1,2,3,5¢s

structive interference:

The interference of two waves,

so that they cancel one an-
other. Its condition is

path difference,d =(m + %) ,
m= 0,1,2,3

geees

*Angle & between any two lines
is equal to the angle between
their perpendiculars.

-
|
|
#
o

Fig.(?) . £

Position of mth bright fringe

- s

sa Fring@ width = A

OP << OR

so OR &= PR

or tan & == sin &
m m

since

frt..(g}

AD/d, QAD/d,...
)\D/d . e ED) ,

= I =BAT d

I
1¢Ea 5
W

i.e.

1%

I saseelll)

i .___"'
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21- THE MICHELSON INTERFEROMETER
Michelson Interferometer:

Device includes one half sivered mirror and two plane mirrors,
using interference of light waves to measure very small
distances.

This device splits a light beam into two parts and then recombines
them +to form en interference pattern. It is used for accurate

M - Movable)
mirror

measurement of wavelencgth.

The experimental arrangement
is shown in the figure.

Monochromatic beam of light
is split into two rays through ( Diffuse )
€

M

half silvered mirror M. light sourc

One ray is reflected towards”
Ml and second ray is transmitted

through M towards mirror M,.

Beamn ) - b
s : ompensator
After reflecting from mirrors i ( Slate

My and M, , the two rays recombine P

to produce an interference, seen '!r'
through a telescope. Eye

The glass plate D is placed to compensate the path length.
The path difference is varied through move-able mirror M, .

1L
S0 we see a series of bright and dark fringes.
If M1 is moved a distance of A/4, the path difference changes by A2,

Then the two rays interfere constructively giving rise a bright
fringe.

When M, is moved further N4, the total distance covered is )\/2,

a dark fringe will appear.

Thus we see successive bright and dark fringes, as the mirror
My moved a distance A/4.

The wavelength A is measured by counting the fringe shifts m

for a given displacement p of the mirror Ml . S0 we have

p = 2mA e RPN (1)

This interference is used tgo make very accurate measurements.

Fixc:))

mirr
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22- POLARIZATION OF LIGHT WAVES
We define:
Polarization (of light):

"The limiting of the vibrations of light, usually to vibrations
in one plane".

The phenomena of interference
and diffraction proves the
wave nature of light, but
pelarization shows that light
moves as transverse waves.

To distinguish between
a transverse wave and
longitudinal wave, a mech-
anical experiment can be
performed as illustrated
in fig.(1l)s

(a)

Transverse wave on a
string is passed through a
wooden piece with a slit P.
If the slit is at right
angles, the wave is not
passed. If the wave was
longitudinal, the slit (b)
position does not count.

Consider a begm of ord- Fig. (1)
inary light, consisting of
different planes of vibrat-
ions. Also directions of
vibrations are perpendicular
to the propagation of waves,

Shown in fig. (3).
Under certain arrangement
the vibrations are allow=-
ed to pass parallel to slit.
The resulting light is said
to be polarized.

In light waves, a tour-
maline crystal plays the
same role as the wooden slit
in the above mechanical
illustration.

When two tourmaline cryst-
als placed with their crystal
axes parallel, a beam of light"
falls on them is transmitted.

 Fig.(3)
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If one of them is rotated, the intensity of the transmitted light
decreases and finally cut off when the axes of two crystals become
perpendicular to each other.(fig. (3) ). On further rotation the

light reappears.

This transmitted light is called plane polarized, which is defined
as a beam of light in which all the vibrations are in one direction.

Factors:

According to electromagnetic theory, light waves consists of
electric and magnetic field components perpendicular to each other.
When light passes through certailn crystals, the electric vibrations
are confined in a particular plane are moved in a single direction.
In . general polarization depends upon,

l. Selective absorption of light
2. Reflection of light
3+ Refraction of ligh

4, Scattering of ligh.

APPLICATIONS:
l. Polaroid filters:

Its a transparent plastic sheet in which needle like crystals
are embeded. These filters are used in many fields for polariza-
tion of light.

2. Optical actiwity: -
Concentration of sugar in blood or urine is determined through
polarized light.
3. Curtainless window: .
An outer polarizing disc is fixed and an inner one is rotated
to adjust the amount of light.
4, Head lights:
At night head-light: glare can be controlled through polar-
izing headlights and light polarizing viewer.
5. Phetography :

Polarizing discs are used in front of camera lens to enhance
the effect of sky.
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23- Equation of Continuity
STATEMENT:

“The product of cross-sectional area of the pipe and the fluid speed at any point along the
pipe is a constant”. Mathematically,
Arvi =Ax vy

PROOF:
Consider
A fluid flowing through a pipe of non-uniform size.
And the flow of the liquid is

-
1,

3

streamline & incompressible. AN~
Let

As in the figure A
At left side:

Velocity of the fluid = v,

Move through distance = A x)

Density = mass / volume

Area of cross-section = A pm/V
So volume = Vi =Ax; . A, or m=pV
& mass passing during At
Am|=p1V|:p1Ax].A| S=vt

or Am; =p; Ay vy . At s (1) or Ax;=v t

At right side:

Velocity of the fluid = v,
Move through distance = A x;
Area of cross-section = Ay
So volume = Va=Ax;. A
& mass passing during At

Amy=p; V2= pr Axa. Az
or Amz = pr Ay va . At e (2)

As the streamline flow is incompressible, so

Am; = Amy .n(3)
from equations (1). (2) & (3) we have

prATV AL = pr A vy At
since density is constant, i.e., pi=pz =p , S0
pAIVI =pArva
Ajvy = Aava

Which is Equation of Continuity.
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24- Bernoulli’s Equation

In a steady frictionless motion of a fluid acted on by external forces which possess a
gravitational potential pgh, then
P+ % pv+ pgh=constant

where P & p are the pressure and density of the fluid, v is the velocity of

the fluid along a streamline.
PROQF:
Consider

A fluid is flowing , (in the figure) ) ax, e

And assume; o -
1) The fluid is incompressible, P "[77/ -
2) Non-viscous, s |/
3) Moving with streamline flow /

Let (shown in the figure) ! N \ > A%, [
A liquid of mass (Am), flowing through A ‘ - i Pz_
e

A pipe during time (t),
At left side:

Pressure = P |
Velocity of the fluid = v,
Move through distance = Ax,
Area of cross-section = A,
Height from the bottom = h;

At right side:

(for the same mass Am )
Pressure = P,
Velocity of the fluid = v,
Move through distance = Ax;
Area of cross-section = A,
Height from the bottom = h;

We have
Pressure =P =Force/Area =F/AorF=P A (D
Work done = W = force x displacement =F x Ax=PA Ax e (2)
Also S=Ax =vt ..(3)
& p=m/V oV=m/p
as volume = area x length
so A.Ax =Avt=V=m/p ce(®)
for the same mass flowing during time t, through both ends, the volume will be
Ajvit= Abvat =AVt (5)
Now from equations (2) & (4) we have

W =PAvt
Or W=Pm/p (6)
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Now we have

Kinetic energy = KE = 4 m v ]
& Potential energy=PE=mgh sl ®)
Taking mass (Am) of the fluid flowing from upper end to lower end as same.

Applying the Law of conservation of energy to this volume ((Am) of fluid:

Net Work done = change in KE + change in PE
Or Wiigserand + Wiswessia = {EBipger— KEwwer T + { PEise— PBiowas: } cn(9)
From equations (6) to (9) we have
Pim/p +{(-P)m/p} = Yimvy - Ymv)? +mgh -mghy
Or m/p(Pi-Pa)= m(% v - %vi® +gh -ghy)
Or Pi-Pa= p(¥va- %v? +gh-gh)
Or Pi-Py= Ypvi - pvi® + pgh -pghy
Or B+ Vzpv]2+pghti P, +Vzpvzz+ pg hy

Or P+ Y%pv'+pgh= constant

Which is Bernoulli’s Equation.
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24—~ MICROSCOPES

a) Magnifying glass (or Simple Microscope):

We define:
"An ordinary convex lens held close to the eye is called
magnifying glass".
ast distance of distinct vision,(d):
The distance equal to 25 cm for a normal person to see
clearly an object. (fig. a)

Magnifying power (M) :

The ratio of the angle formed by the image of an object
seen through an eye piece at the eye to the angle formed by
the same object when both are placed at the least distance of
distinct vision from the eye.

Mathematically, F

M o= —

From the fig., we have
A'B! A
tanf = AR & tang= 3-

d
for small angle,
ALB! AB

tanﬁ:?: T & tand{ =ol= a

D _A'B'/d _ A'B' ...(2)
So M= = AB

In fig.(b), triangles A'O B' and
AOB are similar, so

A'B" =__§__. sssaes (3)

A B P =
From eqgs. (2) & (3), we get Taylor's series for,
= S ...l (4) &
From the equation, a2 P~
— COSﬁ' =.L—""""'"'|"+ - ssse
1/€=1/p + 1l/q 27 " T4l
since q = -d, as virtual image, for small & ,
° 1f = lp - L/d sin & = &
multiplying both sides by d, we get ssg @ & 1
d/f =d/p = L so sin &
6 dp = I * G/F esssl8) ten @ = L ~ &
L
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From equations (4) and (5), we get

M = l + % t----un(6)

1

So magnifying power of magnifying glass is inversely proportional
to f. Lesser the fotal length, greater will be its magnification.

b) Compound Microscope :

We .define:

"Compound microscope is a device used to produce a very large
magnification of very small objects. It consists of an objective
and an eye=-piece".

S,Qngir!ﬁij on: Objective

A
Compound microscope (fig.c)

Eye-piece

w

T GREEEEEE
:

)

4

Consists of two convex lenses.
~=-=-=-an objective of short focal
length and small aperture and
eye-piece of large focal length
and large aperture as compared
to the objective. .

Working : Fig. (c)
The object AB forms a real, inverted and enlarged image A'B'
of the object placed just beyond the focus of the objective.

The eye piece is used as a magnifying glass to see the final
image A''B'' at least distance of distint vision, d. It is virtual
and very much enlarged.

Magnifying power:

We define: . _ Angle formed by final image
gnilylng power = Tngle formed at naked eye
or M = ii

From the figure, we have
A!IBI!
tan f= f= S

and (from fig. a), tand =& = —&g—

P AL B VIRt
So M = =——— = = SSLIBLY
= B AB
d

A!IBII AIB! = M
or M = —_A‘BI XAB_ lx M2 -0-.(7)
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In eq. (7), My is the magnification produced by the eyepiece and
M, that produced by the objective.

Now, in the fig.(c), triangles A'O B' and A O B are similar, so

gtBr . _B'O
AB BO
q
or A'B' = 000-00(8)
AB P

which is the magnification produce by objective.

Now, magnification produced by the eye-piece (see eq.8),

e AViIptt - _d_
Ml o A_'B—' I l + f 'looo(g)

e
[} = fe= focal length of eye-

From eqgs.(7), (8) & (9), we get piece.

9
M o= — (1+=8) ...... (10)
P £,
Usually, the object AB lies very close to the focus of the
objective of focal length f, , So
fO = p s 00000 (ll)
And image A'B' lies very close to the eye-piece and image distance
q is approximately equal to the length L of the microscope tube, so
q = I s sesn e (12)

From eqs. (10), (11) & (12), we get

e

M =

(1 + -%-) TR 5
y £ fe

]

o )

which is required formula for magnification of compound micro-
scope. From here we see that for high magnification the objective
and eye-piece should be of short focal length. However, f, < fe .
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25~ TELESCOPES
We define:
Telescope :

"A device for collecting and producing an image of distant
Objects LS

. To see distant objects (e.g. distant galaxies) more amount of
light is needed. So the objective lens used in a telescope is of
large focal length with large aperture.

There are two types of telescopes:

a) Reflecting telescope:

An ipstrument which uses a concave mirror to bring light of
distant objects to a focus,

b) Refracting telescope:

An instrument which uses a lens to bring light of distant
objects to a focus.

Three types of refracting telescopes will be discussed below.

l. Astronomical Telescope:

We define:

"It is a telescope used to see heavenly bodies; it consists
of two convex lenses, one for objective and the other as an

eye-plece™.
Details:

The objective is a 4

convex lens. It has large %

focal length and large
aperture. To reduce chro-
matic and spherical aber-
rations, usually combinat-
ion of two lenses in
contact is used.

The eye-piece is
also a convex lens. It
has short focal length and small aperture. To reduce chromatic and
spherical aberrations, combination of two lenses separated by a
suitable distance is used.

The objective is mounted at one end of a tube and eye-piece is

mounted in a small tube to slide inside the bigger tube of the objecs
tive.

Working:

The objective form a real, inverted and diminished image at
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its focus Bl of a distant object, in front of eye piece.

The distance between the eye-piece and this image is adjusted
within the focal length so that a magnified and virtual image is
formed at the least distance of distinct vision. If the image A Bl
is made at the focus of eye-piece then the final image is formed
at infinity. It is called the telescope is focused for infinity.

Then

Length of the telescope = f, + fe s (L)
where £, = focal length of objective,
g = * " eye-piece.

e

Here the final image is formed inverted, which makes no difference
for astronomical purposes.

Magnifying power :

We define:

"It is the ratio of the angle formed by the image at the eye
as seen through the telescope to the angle formed by the object
with unaided eye, the object and image both lying at infinity".

Mathematicall &
Y’ M = —L— see e 0e (2)
578
In the figure,
Z‘ALC Bl = B L (3)
2 g,Azclaz = LAlClBl = ei saswe ()
Now for small angles A B -
& = tan & = v 30 wrals) Taylor's series for
(] o El'c' . 5 P " 9_ - ?
A B sin 6= & - gi 5i LR
& & = tan €, = sivpeapili) 3 e L&
ki i Blcl ces =1 = 51 v 5

From egs. (2) to (6), we get for small o,

A B /B C Cc
— T ! sine = o
Al"1/e C ) A cos & = 1
BC _.sin &
Qr M = -Ejl-tl- EERE) (7) L o9 Ten @ cos & e
L
When telescope is focused for infinity,
B,C = focal length of the objective = f, s swslB)
C = " " " " il = —
& B,C, eye-piece £y (9)

From eqs. (7), (8) & (9), we get £ < F (10)
Y e o tee e
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Postulates of the Kinetic Theory of Gases

The kinetic-molecular theory of gases is based on the following main
assumptions first stated by Clausius.

1. A chemically uniform gas consists of very small identical molecules.

2. The molecules are constantly in random motion, moving in all
directions with all possible velocities.

3. The molecules behave like smooth elastic spheres.

4. The energy of the gas is all kinetic.

5. The time spent in a collision is negligible as compared with that

during which the molecules are moving independently.

6. Between collisions the molecules move in a straight line with uniform
velocity.

7. The molecular radii are assumed to be negligibly small as compared
with the mean free path.

8. The average kinetic energy of gas molecules is proportional to the
absolute temperature.

27- Pressure of a gas from Kinetic Theory
Consider a cubical container of side L.
Area of one side = A,
& Volume=LA=1°=V
Let a molecule is moving along X-direction, h 7’
Its velocity will be = v <« —| —>

Time interval = t
Distance traveled = v
Distance traveled between

two consecutive collisions = 2L

[S=vt& t=S8/]
Time for one collision= 2L /v, ... (1) X
No. of collisions per second = 1 8 &

2L /v 1x

No. of collisions in At=v .. At/2L )%
Momentum of the molecule before collision = m v |,
Momentum of the molecule after collision=-mv |,
The change in momentum of the molecule =-mv |, - (mv ;)

‘N\h |

=-2mv iy e (2)
rate of change of momentum=-2mv ),
2L/ mv i,
=.mv,.v, =-mv,’ (3)
I, L

Now we have
Force=f=ma=m (v -v)
t
=m (v; - v;) = Rate of change of momentum (4
t
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from equations (3) & (4)
F=-mv gz
IL
Where T is the force exerted by the wall on a molecule
So force exerted on the wall by a moleule is

-F:-mvl,(2 or F :msz e (5)
L IL;
And total force exerted on right wall by all the molecules, Fy , will be
F=m VZLX +m V2L + mvzlx_Jr .......... + mszﬁ
L L L e
or F=m v e (B)
L

So pressure p on the wall will be
p = m/L)Emvy /L> [p=F/A & A=L?
or p = (m/LB)vazix_ v (D)

Now we define
mean square velocity <V’ >, as

2 2 2 2
Y > = Vogx TV PV .. T Vinx

a N

or <v2\ > =3 VZ“ /N
or Tvi, =N<vi = e (8)
From equations (7) & (8), we have
P == (m/L%) N<vi > e (9)

We have
V> = i >4y >+ <>

as particle is moving in random direction so

-0 2 2 2
Wy > = <Y > = v = 13v> e (10)

from equalioné (9) & (10), we have

= (mN/L*)1/3 < > e (1)
MmN/ 1/3<?>  [vol =V =17

(N/V)m 1/3 <v* >

(2N/V)¥%ml1/3<vi>

o]
e
]

p=Q@AN/V)<I2mv*> (12)

or p = 2/3(N/V)<KE> . (13)
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Defining
N, = No. of molecules = N/V
Volume Y (14)
& <12mv’> = (KE)

from equations (12) & (14), we have
p = 2/3N, (KE)ay e (15)

it implies that
p (KE) e (16)

Defining temperature T :

We have from previous knowledge
pV = nRT
or p = nRT/V c (17)
from equations (12) and (17), we have
nRT/V = (2/3 N/V) <1/2 mv* >
or T = 2/3 (N /R) <1/2 mv? > e (18)

or T (KE)ay e (19)

Derivation of gas laws from kinetic theory of gases:

We have from previous knowledge [ eq (12)],
p = 23 N/V)<1/2mv’ > (D

If average KE = <1/2 mv* > is constant, then

pV = (2/3N)xconstant = constant . (2)
which is Boyles’s Law.
Now from eq. (1)

V = (23N/p)<1/2mv’> e (3

If pressure p is constant, then

V = constant x <1/2 mv’

>
or V (KE)ay
As (KE), is measure of Temperature T, so
v T

which is Charles’ Law.
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28- Thermal Expansion

To prove = 3a

We define.
B=_AV .
Ve AT
AV =BV, AT (1)

or
Considering a rectangular parallelepiped with dimension L; , I, and L5, then

V0:L|.L2.L3

[For linear expansion, we have

L =Ly(l + aAT)

Ly

So the length of each side changes and the new volume will be
Li (1 +aAT)x L (1 + aAT) x L3 (1 + oAT)

L1, Ls (1+aAT)
=V, (1 +aAT) [Vo=LiLyLs ]
[(@a+Db) =a +3ab+3ab’ +b']

Vo + AV

=V, {1 + 3(1)% (@ AT) + 3(1)(a AT) + (a ATY }
=V, {1 + 30 AT + 32 AT> + o AT’}

since o AT is very small, neglecting its higher powers, we get

Vot AV =V, {1l + 3a AT}
Vot AV =V, + Vox3a AT
or AV = Vyx3a AT
AV =3V, AT

or

L2

or

Comparing equations (1) and (2), we get
= Jon

which is required proof.
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29- First Law of Thermodynamics

Statement

“The heat energy supplied to a system is equal to the increase in the internal energy of the
system from an initial value U; to the final value Uy plus the work done by the system on its
surroundings™, Mathematically

AQ = AU + AW e (1)

Explanation
Eq. (1) defines the change in the internal energy of a system. It is equal to the energy

flowing in as heat energy minus the energy flowing out as work.
The first law of thermodynamics indicates that there exists a useful state variable of every
thermodynamic system called the internal energy.

Applications:

1.Isobaric Process:
“The process in which the pressure of the system remains constant™.

Gas-cylinder system p-V diagram
g A'/So’bf%
A L 4\ ( 17) \/2- )_Ti‘-__ )
______ AV [> e
T ( PJVM 'l )

V—

Applying the equation in this isobaric process:

Work = force x displacement
W =Fxd [p=FA

AQ = AU + AW or W =pAd [or F =pA
or W=pV [Axd=V
or AQ = AU + pAV or AW = pAV

2. Isochoric Process:
“The process in which the volume of the system remains constant™.

The System p-V diagram
1, Fz 7 V) TZ_
Z 7T /l\
P :{/S o Cfmo‘fv
Pl ? V‘J "l—l
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Applying the equation,
AQ = AU + AW AW =0

or AQ = AU

3. Isothermal Process:
“The process in which the temperature of the svstem remains constant”.

The System p-V diagram
j 8
A Y A I 4\ (F"v*’ )AI/SD.ﬁA_QAM
LB, 5% 7T )

/H&-Jt LageAN DA \ NV —

Applying the equation,

AQ = AU + AW AU =0

or AQ = AW

4. Adiabatic Process:
“The process in which no heat enters or leaves the system”.

The System p-V diagram

T

=

(B V)
&cﬂ/\imko/{

S

<
T >

(pL) VLJ_TL)

h
SN NN

|

Vs
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Applying the equation,

AQ = AU + AW AQ =0
0 = AU + AW
or AW = -AU

Also in adiabatic changes the following relation is found to be true.

p V¥ = constant Yy = C, /Cy

5. Heat Capacity of an Ideal Gas:
We have from previous knowledge

AQ = mecAT
for molecular specific heat
AQ = nCAT
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At constant volume:
Heat energy used in raising
AQ = nCy AT = the temperature through AT e (D)
[pV =nRT]|
& Heat energy used in doing = AW = pAd = pAV = nRAT ... 2)
the external work ‘

At constant pressure:
Heat energy used in raising Heat energy used in
AQ = nCy AT = the temperature through AT +  doing the external work e (3
from equations (1). (2) & (3), we get
nC, AT = nCy AT + nRAT
or C, =Cy +R

It implies C, > Cy
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30- Second Law of Thermodynamics

Lord Kelvin’s Statement
“No heat engine operating continuously in a cycle, can extract heat from a heat reservoir and
convert all of it into work™.
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Clausius Statement

“[tis impossible to cause heat to flow from a cold body to a hot body without the expenditure
of energy”.

BOTH STATEMENTS ARE EQUIVALENT

It can be proved by showing that, if either statement is false the other statement must be false
also.

Suppose that Clausius statement were false so that we could have a refrigerator operating
without doing any work on it. We could use an ordinary engine to remove heat from a hot
body. to do work and to return part of the heat to a cold body.

By connecting our perfect refrigerator into the system, this heat would be returned to the hot
body without the expenditure of any work. It violates the Kelvin’s statement. If we reverse
this reasoning, even then the net result is a transfer of heat from cold to hot body without
expenditure of work. This is the violation of Clausius statement.
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31- Entropy & Second Law of Thermodynamics
Entropy:

“The physical quantity which describes the ability of a system to do work and it also
describes disorder of a system”. Mathematically

AS = AQ/T

Entropy is a state variable. It is a measure of disorder. The more disordered the state of a
system, the larger will be its entropy.

Another form of Second Law of Thermodynamics
“If an isolated system undergoes change, it will change in such a way that its entropy either
remains constant or it tends to be maximum”.

Relating the both

In the definition and application of the Second Law of Thermodynamics, Clausius was the
first to introduce a new physical quantity, called entropy, which has proved to be of great
importance not only in the further development of thermodynamics but also in the
recognition of a fundamental law of Nature. The problem of continuous conversion of heat
into work, with which the second law deals, is largely dependent on the direction rather than
the actual amount of energy change in a system. We find that the new concept, entropy, can
cover that additional factor. In the application of the second law, the change of the thermal
state of the working substance is more important than the general idea of more convertibility
of heat in work, since it is the working substance alone which undergo a thermo-dynamical
change in the process, so entropy can efficiently define the thermo-dynamical state of any
working substance. Also entropy deals with the physical property of a substance that can
remain constant in adiabatic change.

The above arguments lead us to restate second law of thermodynamics in terms of entropy.
That is, the entropy of the Universe during any process either remains constant or increases.
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